

May 14, 2024 Page 1 of 3

RESPONSES TO THE TOWN OF NORTHBOROUGH PLANNING REVIEW COMMENTS DATED APRIL 10, 2024

- 1. <u>COMMENT</u>: The Table of Density and Dimensional Regulations (Zoning Bylaw Section 7-06-030) specifies that the minimum front yard setback in the Downtown Business District is 6 feet and the maximum front yard setback is 20 feet. The Zoning Board of Appeals granted a dimensional variance to allow the proposed building to be located up to 40 feet from the front lot line to enable the large fire apparatus to maneuver into/out of the building and maintain the maximum grade of 3% and ensure clear sight lines.
 - **<u>RESPONSE</u>**: *Please see revised plans with updated Zoning Table inclusive of the dimensional variances granted.*
- 2. <u>COMMENT</u>: The Applicant was granted a dimensional variance to install a wall sign of up to 172 square feet.

<u>RESPONSE</u>: No changes made to the site plan.

3. <u>COMMENT</u>: The Zoning Board of Appeals denied the application for a use variance to allow an Electronic Message Center within the proposed freestanding sign. The Applicant should specify whether the freestanding sign will be removed or whether they plan to submit an alternative design without the Electronic Message Center.

RESPONSE: The electronic portion of the sign has been removed. The sign may be built as is or slightly modified, though it is not anticipated to change size or require zoning approval.

- 4. <u>COMMENT</u>: The Applicant submitted a number of written waiver requests as detailed below. The Planning Board should determine if they are amenable to the grant of these waiver requests:
 - a. All filing fees, including advertising fee.
 - Planning Board Rules and Regulations Section 7.2(C) Waiver from the required scale of 1"=40'. Most sheets of the site plan are at the scale of 1"=20'.
 - c. Planning Board Rules and Regulations Section 7.2(C)(4) Locus plan at the scale of 1"=100' showing the location and use of any building within 300 feet of the boundary of the site and driveway and utilities within 200 feet of the subject property along the frontage street. The submitted locus plan is Not To Scale and does not include utility information. A supplemental land use/land cover plan entitled "Figure 1: Site Locus Map" was submitted, but it also does not provide any information about utilities.
 - d. Planning Board Rules and Regulations, Section 7.2(C)(7) Extending contours at least 50 feet beyond the site boundaries. For the most part, the contours extend at least 20 feet beyond the site boundaries.
 - e. Planning Board Rules and Regulations Section 7.2(D)(1)(a) Traffic impact assessment.

May 14, 2024 Page 2 of 3

- **RESPONSE:** Item c: An updated site locus map at scale 1" = 100' has been included with this response to comments document. This map includes the location and use of buildings within 300 feet of the project boundary and utility information within 200 feet of the subject property along the frontage. The original waiver requested for the required utility information is retracted.
- 5. <u>COMMENT</u>: The following required information is missing from the site plan. The Applicant should revise the plan to depict the required information or submit a written waiver request for Planning Board consideration:
 - a. Planning Board Rules and Regulations Section 7.2(C)- All plans and stormwater documents should be stamped by the qualified professional who prepared them;
 - b. Planning Board Rules and Regulations, Section 7.2(9)- Calculation of proposed lot coverage;
 - c. Planning Board Rules and Regulations, Section 7.2(5)- Location of the site relative to the Groundwater Protection Overlay District;
 - d. Planning Board Rules and Regulations, Section 7.2(6)- Location of the site relative to the Floodplain District.
 - **<u>RESPONSE</u>**: *a. Stamped copies of the Site Plans and Stormwater Management Report have been provided as part of this response to comments.*
 - b. Calculation of proposed lot coverage has been added to the zoning table.

c. Groundwater Protection Overlay District map has been attached. A portion of the site falls within the Groundwater Protection Overlay District Area 3.

d. A FEMA flood map has been provided in the Stormwater Management Report. The FEMA flood map shows the site in relation to the Zone AE of the Cold Harbor Brook which has a Base Flood Elevation of 295.00 FT. The Zone AE is approximately 200 FT from the site.

6. <u>COMMENT</u>: A detail for precast concrete wheel stops is shown on Sheet C7.2, however the location of these wheel stops is not depicted on the layout plan. Please clarify where the wheel stops will be located or remove the detail from the site plan to avoid confusion if they will not be installed on site.

RESPONSE: The concrete wheel stop detail has been removed from the site plan.

- 7. <u>COMMENT</u>: The landscape plan on Sheet L-1 includes a detail of a fence. Although that fence is appropriate for the top of the retaining wall, the fence around the dumpster should screen the dumpster in accordance with Zoning Bylaw Section 7-09-020C.(d). A stockade or white vinyl fence is preferred over a chain link fence with privacy slats.
 - **<u>RESPONSE</u>**: Please see the revised Landscape Plan for more information on the dumpster enclosure.

May 14, 2024 Page 3 of 3

8. <u>COMMENT</u>: The Demolition Plan (Sheet C2.0) shows removal of the existing brick crosswalk across Route 20 that exists in between 53 & 56 West Main Street. It is not clear if the intention is to replace the crosswalk with a striped crosswalk or eliminate the crosswalk altogether. I strongly recommend against the removal of the crosswalk as the Town is embarking on a Downtown Revitalization effort aimed at enhancing walkability throughout the Town Center and making the area more attractive. I am amenable to an alternative location for the crosswalk, but it should exist somewhere along the fire department's property frontage and should have a similar stamped asphalt design in a brick pattern so that it matches the other crosswalks in the area.

RESPONSE: The site plan has been updated to keep the existing crosswalk as is.

- 9. <u>COMMENT</u>: It is unclear if the sidewalk proposed along the east side of the building has a 7" high safety curb at the building egress location per Zoning Bylaw Section 7-09-030E(4). A detail of the curb should be added to demonstrate compliance with this requirement, or the Applicant should submit a written waiver request for Planning Board consideration.
 - **RESPONSE**: Sheet C-400 Grading Plan has been revised to provide a 7" curb reveal.
- 10. <u>COMMENT</u>: I recommend requiring submittal of the retaining wall design for Planning Board review and approval as a Condition of Approval.
 - **RESPONSE:** A note has been added to the retaining wall detail indicating the Contractor shall provide the design of the retaining wall to the Planning Board following submission during construction.
- 11. **<u>COMMENT</u>**: A detail of the proposed emergency gate should be added to the site plan.
 - **<u>RESPONSE</u>**: The gate proposed at the center of the site between the two parking areas is proposed to be a manual gate. Please see revised Landscape Plan for more information.
- 12. <u>COMMENT</u>: I recommend including a Condition of Approval that mandates a connection between the sidewalk along the applicable property frontage and the sidewalk serving the abutting property at 73-79 West Main Street. Alternatively, a new sidewalk could be constructed within the Route 20 right-of-way from the Fire Station to the first driveway serving the Hillside Grill.
 - **<u>RESPONSE</u>**: The site plan has been updated to provide a walk adjacent to the right of way along the project property frontage.

JJ/npc

Y:\JOBS\23 Jobs\23141.00 Northborough-New Fire Station-MA\CORRESP\RTC\Northborough Planning Review RTC.docx

May 14, 2024 Page 1 of 4

<u>RESPONSES TO THE TOWN OF NORTHBOROUGH SITE PLAN REVIEW COMMENTS</u> <u>DATED APRIL 11, 2024</u>

- 1. **<u>COMMENT</u>**: The application package also included a list of Requested Waivers and there is only one item I would recommend not be granted which is the locus map at a scale of 1" = 100' showing the entire project, the location and use of any buildings within 300 feet of the project boundary. The point of requiring this item is to have a comprehensive discussion during the public hearing regarding potential conflicts with existing driveways in the area. While I understand the emergency vehicles will have priority over all other vehicles it is the entering and exiting of the non-emergency vehicles that should be discussed to minimize conflicts.
 - **RESPONSE:** An updated site locus map at scale 1" = 100' has been included with this response to comments document. This map includes the location and use of buildings within 300 feet of the project boundary and utility information within 200 feet of the subject property along the frontage. The original waiver requested for the required utility information is retracted.
- 2. <u>COMMENT</u>: The Stormwater Management Report appears to be appropriately designed for this site; however, the Site Plans and the Stormwater Management Report are not stamped by a Professional Engineer and should be.

<u>RESPONSE</u>: Stamped copies of the Site Plans and Stormwater Management Report have been provided as part of this response to comments.

3. <u>COMMENT</u>: The plans indicate the proposed building is to be connected to the town sewer and town water systems. Therefore, the project will be required to pay a Sewer Privilege fee in the amount of \$27,300 and a Water Privilege fee in the amount of \$7,000 prior to obtaining the building permit or shall obtain waivers from the Water and Sewer Commissioners.

<u>RESPONSE</u>: A waiver request will be submitted to the Water and Sewer Commissioners for the Water and Sewer Privilege fees.

- 4. <u>COMMENT</u>: All existing driveway openings which are not being utilized shall be removed and replaced with a concrete sidewalk.
 - **<u>RESPONSE</u>**: *Existing driveway openings serving the property via West Main Street that are not remaining will be removed and replaced with curbing and a concrete walk.*

May 14, 2024 Page 2 of 4

- 5. <u>COMMENT</u>: The proposed plan indicates the existing crosswalk is to be removed and disposed of. I recommend the crosswalk be re-installed near the intersection of Monroe Street and an additional crosswalk could be installed at the westerly end of the property. Both crosswalks should be similar to the existing imprinted crosswalk for continuity in the downtown area.
 - **RESPONSE:** Please see revised plans attached with the existing crosswalk proposed to remain. One of Pare's Traffic Engineer reviewed the option of an additional crosswalk at the westerly end of the property and has indicated that it is best to limit midblock crosswalks. The Traffic Engineer has indicated that the existing location is preferable to the westerly end of the property based on the driveways and activity at the westerly end of the property. Therefore, an additional crosswalk has not been added to the plans.
- 6. <u>COMMENT</u>: The project requires a State Highway Access Permit to be issued by Mass DOT and a copy of that permit shall be submitted to the Town prior to the start of any construction on site. MassDOT will have input into the location of the relocated crosswalk and must also approve the connection of the proposed drainage system.
 - **RESPONSE:** A State Highway Access Permit is required for this project. A note has been added to the drawings indicating that the Contractor shall submit a copy of that permit to the Town of Northborough prior to the start of construction.
- 7. <u>COMMENT</u>: The project will require new preemption signals to be installed in West Main Street in front of the proposed Fire Station and once the this is accomplished the existing preemption equipment in Church Street, installed for the benefit of the existing Fire Station should be removed. The removal of the preemption equipment in Church Street will also allow for a reevaluation of the intersection of Church Street, Pierce Street and West Main Street by MassDOT.
 - **<u>RESPONSE</u>**: A new preemption signal is proposed as part of this project. Removal of the old preemption signal and reevaluation of the Church Street intersection is not proposed as part of this project.
- 8. <u>COMMENT</u>: The application indicates there are approximately 30 public parking spaces to be provided. These spaces should be labelled on the plan and on site.

<u>RESPONSE</u>: Signs have been added to the plans to designate public parking and authorized vehicles only for the two respective entrances.

9. <u>COMMENT</u>: A minimum of two permeability tests shall be performed within each of the areas to be utilized for infiltration, to verify all assumptions made in the design of the drainage system. The Town shall be provided with an opportunity to witness the testing. The permeability tests shall be performed with the results submitted to the Town Engineer prior to the issuance of the building permit.

May 14, 2024 Page 3 of 4

- **RESPONSE:** The infiltration systems have been designed based on the infiltration rate determined from on-site soil texture and Rawls rates as published in the Massachusetts Stormwater Handbook as specified in the Town of Northborough Stormwater Management Regulations voted August 16, 2021, Section 7 Stormwater Management Plan for Permit Application, Part G Stormwater Management Design Standards number 11.
- 10. <u>COMMENT</u>: The flow of water of water exiting each of the underground infiltration systems shall be at the opposite end of the system from where the flow enters to avoid short circuiting of the flow.

<u>RESPONSE</u>: The outlets of each underground infiltration system have been designed with a weir to prevent water from short circuiting the systems.

- 11. <u>COMMENT</u>: The plans indicate buoyancy calculations of the underground concrete vault detention system are to be provided by the contractor and I recommend these calculations be provided by the design engineer as a condition of approval.
 - **<u>RESPONSE</u>**: Attached please find buoyancy calculations for the underground concrete vault detention systems. The designer of the selected system shall provide final buoyancy calculations based on the systems selected during construction.
- 12. <u>COMMENT</u>: A Land Disturbance Permit from the Conservation Commission is required upon approval by the Planning Board and prior to the start of any construction.

RESPONSE: A Land Disturbance Permit was submitted to the Conservation Commission on April 25, 2024.

- 13. <u>COMMENT</u>: The Stormwater Operation and Maintenance Plan and Long Term Pollution Prevention Plan should be revised to include annual reporting to the Town. The Operation and Maintenance Plan includes some equipment requiring maintenance and/or replacement products which is not easily accomplished by the Public Works Department with their available equipment and staff. Therefore, I recommend the Public Works Director be part of a discussion to determine some alternate water quality devices and a more appropriate maintenance schedule which is more practical for the DPW to perform. In the event some alternatives are not available, then the Fire Department may need to hire an independent contractor to perform the long term operation and maintenance of the proposed drainage system.
 - **RESPONSE:** Please see revised Stormwater Operations and Maintenance Plan and Long Term Pollution Prevention Plan which includes annual reporting to the Town.

The proposed products noted are for reference only. The Contractor shall provide the specified products or approved equivalent. Operations and Maintenance and Long Term Pollution Prevention Plan shall be updated with the selected products

May 14, 2024 Page 4 of 4

Northborough Fire Station Northborough, MA Pare Project No. 23141.00

maintenance procedures per manufacturer requirements.

The Fire Department shall establish a Maintenance Agreement if the DPW is unable to perform the required maintenance and/or provide replacement products for the systems selected during construction.

14. <u>COMMENT</u>: A completed Operation and Maintenance inspection report shall be submitted with the as-built plan prior to the issuance of an occupancy permit.

- **RESPONSE:** An Operations and Maintenance inspection report template is provided in the Operations and Maintenance Plan. A note has been added to the plans indicating that the Contractor shall provide an Operation and Maintenance inspection report with the as-built plan.
- 15. <u>COMMENT</u>: Once all comments from all approvals have been incorporated onto a final set of plans with the same revision date, the plans shall be reviewed and approved by Town Staff prior to the start of any construction.

RESPONSE: Please see updated plans attached.

16. <u>COMMENT</u>: An as-built plan of the entire site which is to be drawn at the same scale as the approved plan shall be submitted to the Town for approval prior to the issuance of a certificate of occupancy. The as-built plan for the entire site shall include, at a minimum and as applicable to the project, a permanent benchmark, elevation of all utilities, pipe inverts and outlets, pipe sizes, materials, slopes; all drainage structures; limits of clearing, grading and fill; all structures, pavement; contours; and all dates of fieldwork. The drainage system shall also be certified by a Professional Engineer stating the drainage system was built substantially in accordance with the design and will perform as designed. Upon approval by the Town one (1) mylar and three (3) paper copies of the as-built plan shall be submitted in addition to an electronic copy compatible with the Town's GIS system. The as-built plan shall be based on the Town's vertical datum (NAVD 88) and the horizontal datum (NAD 83).

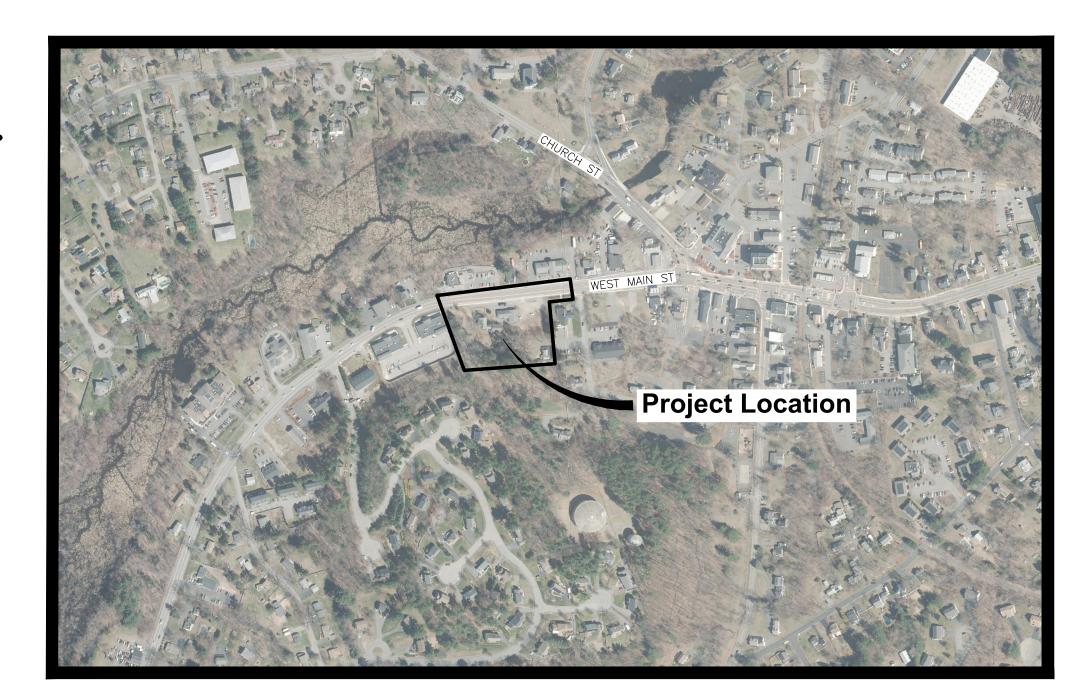
<u>RESPONSE</u>: The Contractor will be responsible for providing as-built drawings.

JJ/npc

Y:JOBS\23 Jobs\23141.00 Northborough-New Fire Station-MA\CORRESP\RTC\Northborough Memo Review RTC.docx

Northborough Fire Station

CIVIL ENGINEER:


PARE CORPORATION ENGINEERS - SCIENTISTS - PLANNERS 8 BLACKSTONE VALLEY PLACE LINCOLN, RI 02865 401-334-4100

ARCHITECT:

24 Roland Street, Suite 301 Charlestown, MA 02129 T: 617.776.6545 F: 617.776.6678 www.hktarchitects.com

63 West Main Street Town of Northborough, MA

Scale : N.T.S.

PLANNING BOARD SUBMISSION MARCH 18, 2024 REVISED APRIL 23, 2024 REVISED MAY 14, 2024

SHEET No.	DRAWING No.	DESCRIPTION
1	-	COVER SHEET
2	C1.1	NOTES
3	C1.2	LEGEND
4	C1.3	OVERALL PLAN
5	C2.0	DEMOLITION, EROSION & SEDIMENT CONTROL PLAN
6	C3.0	GENERAL PLAN
7	C4.0	GRADING PLAN
8	C5.0	DRAINAGE PLAN
9	C6.0	UTILITIES PLAN
10 - 19	C7.1 - C7.10	DETAILS 1 - 10
-	-	ARCHITECTURAL PLANS
-	-	LANDSCAPE PLANS
-	-	PHOTOMETRIC PLANS
-	-	SURVEY PLAN

INDEX OF DRAWINGS

RE	FERENCE	ERO
1.	PROJECT LOCATION: 61 AND 65 WEST MAIN STREET, AND 10 MONROE STREET, NORTHBOROUGH, MA 01532. ASSESSOR'S MAP 63, LOT 9 PARCEL 2, LOT 10 PARCEL 1, AND LOT 7.	1.
2.	EXISTING CONDITIONS MAPPING TAKEN FROM PLAN ENTITLED "EXISTING CONDITIONS PLAN 61-65 WEST MAIN STREET NORTHBOROUGH, MA" PREPARED	2.
ΞF	BY CHAPPELL ENGINEERING ASSOCIATES, LLC, DATED SEPTEMBER 1, 2023. DATUMS: HORIZONTAL: NAD 83, VERTICAL: NAVD 88. NERAL NOTES	Ζ.
	THE COMMONWEALTH OF MASSACHUSETTS STANDARD SPECIFICATIONS FOR HIGHWAYS AND BRIDGE CONSTRUCTION, 2021 EDITION OR LATEST	
	REVISION, AND THE MASSACHUSETTS DEPARTMENT OF TRANSPORTATION CONSTRUCTION STANDARD DETAILS ARE MADE A PART HEREOF AS FULLY AND COMPLETELY AS IF ATTACHED HERETO. ALL WORK SHALL MEET OR EXCEED THE MASSACHUSETTS STANDARD SPECIFICATIONS FOR HIGHWAY AND BRIDGE CONSTRUCTION, WITH LATEST REVISIONS. THE LATEST REVISION OF THE STANDARD SPECIFICATIONS MAY BE OBTAINED AT THE MASSACHUSETTS DEPARTMENT OF TRANSPORTATION.	
•	THE CONTRACTOR SHALL MAKE ALL NECESSARY CONSTRUCTION NOTIFICATIONS AND APPLY FOR AND OBTAIN ALL NECESSARY CONSTRUCTION PERMITS, PAY ALL FEES AND POST ALL BONDS ASSOCIATED WITH THE SAME, AND COORDINATE WITH THE ENGINEER AND OWNER'S REPRESENTATIVE AS REQUIRED.	3.
•	THE CONTRACTOR SHALL BE SOLELY RESPONSIBLE FOR JOB SITE SAFETY. THE CONTRACTOR SHALL PROVIDE TEMPORARY FENCING AND/OR BARRIERS AROUND ALL OPEN EXCAVATED AREAS IN ACCORDANCE WITH OSHA FEDERAL, STATE, AND LOCAL REQUIREMENTS.	3 . 4.
ŀ.	THE CONTRACTOR SHALL BE RESPONSIBLE FOR VERIFYING THAT THE PROPOSED IMPROVEMENTS SHOWN ON THE PLANS DO NOT CONFLICT WITH ANY KNOWN EXISTING OR OTHER PROPOSED IMPROVEMENTS. IF ANY CONFLICTS ARE DISCOVERED, THE CONTRACTOR SHALL NOTIFY THE OWNER AND THE ENGINEER PRIOR TO INSTALLATION OF ANY PORTION OF THE SITE WORK WHICH WOULD BE AFFECTED. NO FIELD ADJUSTMENTS IN THE LOCATION OF SITE ELEMENTS SHOWN SHALL BE MADE WITHOUT THE ENGINEERS APPROVAL.	5.
<u>.</u>	IF ANY DEVIATION OR ALTERATION OF THE WORK PROPOSED ON THESE DRAWINGS IS REQUIRED, THE CONTRACTOR SHALL IMMEDIATELY CONTACT AND COORDINATE ANY DEVIATIONS WITH THE ENGINEER AND OWNER.	
•	ANY AREA OUTSIDE OF THE LIMIT OF WORK THAT IS DISTURBED SHALL BE RESTORED TO ITS ORIGINAL CONDITION AT NO ADDITIONAL COST TO THE OWNER.	6.
•	ALL SITE WORK SHALL MEET OR EXCEED THE SITE WORK SPECIFICATIONS PREPARED FOR THIS PROJECT.	7.
•	ALL SIGNS SHALL BE REFLECTORIZED TYPE III SHEETING AND CONFORM WITH THE MANUAL OF UNIFORM TRAFFIC CONTROL DEVICES, LATEST REVISION.	0
	ALL UTILITIES (LOCATION AND ELEVATION) DEPICTED SHALL BE CONSIDERED APPROXIMATE ONLY. BEFORE COMMENCING SITE WORK IN ANY AREA, CONTACT "DIG SAFE" AT 1-888-DIG-SAFE (1-888-344-7233) TO ACCURATELY LOCATE UNDERGROUND UTILITIES. ALL DAMAGE TO EXISTING UTILITIES OR STRUCTURES, AND THE COST TO REPAIR THE DAMAGES TO INITIAL CONDITIONS, AS SHOWN ON THE PLANS SHALL BE THE CONTRACTOR'S RESPONSIBILITY.	8. 9.
0.	NO EXCAVATION SHALL BE DONE UNTIL COMPANIES ARE PROPERLY NOTIFIED IN ADVANCE. NOTE THAT NOT ALL EXISTING UNDERGROUND UTILITIES ARE SHOWN. IT IS THE CONTRACTOR'S RESPONSIBILITY TO CONTACT ALL RESPECTIVE UTILITY COMPANIES TO VERIFY AND LOCATE EXISTING UTILITIES.	10.
<u>.A`</u>	ALL LINES ARE PERPENDICULAR OR PARALLEL TO THE LINES FROM WHICH THEY ARE MEASURED UNLESS OTHERWISE INDICATED.	11.
	ALL LINES ARE PERPENDICULAR OR PARALLEL TO THE LINES FROM WHICH THEY ARE MEASURED UNLESS OTHERWISE INDICATED.	
	REGULATIONS (CMR) TITLE 521 OF THE ARCHITECTURAL ACCESS BOARD REGULATIONS.	12.
	PRIOR TO COMMENCING WORK, THE CONTRACTOR SHALL PERFORM BENCHMARK FIELD LEVEL VERIFICATION AND COORDINATE LAYOUT CHECK. THE CONTRACTOR SHALL CONTACT PARE CORPORATION IF ANY DISCREPANCIES ARE FOUND.	13.
	DIMENSIONS OF PARKING SPACES AND DRIVEWAYS ARE FROM FACE OF CURB TO FACE OF CURB. DIMENSIONS FROM BUILDING ARE FROM FACE OF BUILDING TO FACE OF CURB.	14.
	ALIGN WALKWAYS ON DOORWAYS THEY SERVE TO PROVIDE MINIMUM REQUIRED MANEUVERING CLEARANCE IN ACCORDANCE WITH THE AMERICAN WITH DISABILITIES ACT (ADA) ACCESSIBILITY GUIDELINES AND CODE OF MASSACHUSETTS REGULATIONS (CMR) TITLE 521 OF THE ARCHITECTURAL ACCESS BOARD REGULATIONS.	15.
E	MOLITION NOTES THE CONTRACTOR SHALL COORDINATE ALL DEMOLITION OF STRUCTURES, PAVEMENT AND CONCRETE MATERIALS, AND UTILITIES WITH APPROPRIATE	16.
	PROPOSED SITE GENERAL, GRADING, UTILITY, AND LANDSCAPING DRAWINGS.	17.
	ALL NOTED UTILITIES TO BE REMOVED AND DISPOSED OF, RELOCATED OR CAPPED REPRESENT ALL KNOWN SITE CONDITIONS TO BE DEMOLISHED. THE CONTRACTOR SHALL COORDINATE ALL UNFORESEEN CONDITIONS WITH THE PROJECT ENGINEER, OWNER AND/OR RESPECTIVE UTILITY COMPANIES PRIOR TO PROCEEDING WITH WORK.	18.
	WATER, SEWER, DRAINAGE, GAS, AND OTHER SITE UTILITIES SERVICING THE EXISTING FACILITIES ARE TO REMAIN ACTIVE THROUGHOUT CONSTRUCTION.	19.
חי	THERE SHALL BE NO INTERRUPTION OF UTILITY SERVICES DURING THE CONSTRUCTION OPERATION WITHOUT APPROVAL OF THE OWNER.	20.
<u> 7</u> K	ADING AND UTILITY NOTES UNDERGROUND UTILITIES DEPICTED WERE COMPILED FROM AVAILABLE RECORD PLANS AND SHALL BE CONSIDERED APPROXIMATE ONLY. BEFORE	21.
	COMMENCING SITE WORK IN ANY AREA, CONTACT "DIG SAFE" AT 1-888-DIG-SAFE (1-888-344-7233) TO ACCURATELY LOCATE UNDERGROUND UTILITIES. ANY DAMAGE TO EXISTING UTILITIES OR STRUCTURES DEPICTED OR NOT DEPICTED ON THE PLANS SHALL BE THE CONTRACTOR'S RESPONSIBILITY. COSTS TO REPAIR SUCH DAMAGES SHALL BE THE CONTRACTOR'S RESPONSIBILITY. NO EXCAVATION SHALL BE DONE UNTIL UTILITY COMPANIES ARE PROPERLY NOTIFIED.	22.
	ALL WORK PERFORMED AND ALL MATERIALS FURNISHED SHALL CONFORM WITH THE LINES AND GRADES ON THE PLANS AND SITE WORK SPECIFICATIONS.	23.
	AT ALL LOCATIONS WHERE EXISTING CURBING OR PAVEMENT ABUT NEW CONSTRUCTION, THE EDGE OF THE EXISTING CURB OR PAVEMENT SHALL BE SAW CUT TO A CLEAN, SMOOTH EDGE. BLEND NEW PAVEMENT AND CURBS SMOOTHLY INTO EXISTING BY MATCHING LINES, GRADES AND JOINTS.	24.
	ALL UTILITY COVERS, GRATES, ETC. SHALL BE ADJUSTED TO BE FLUSH WITH THE SURROUNDING SURFACE OR PAVEMENT FINISH GRADE. RIM ELEVATIONS OF STRUCTURES AND MANHOLES ARE APPROXIMATE. FINAL ELEVATIONS ARE TO BE SET FLUSH AND CONSISTENT WITH THE GRADING PLANS.	
	THE CONTRACTOR SHALL MAKE ALL ARRANGEMENTS FOR THE ALTERATION OF PRIVATE UTILITIES BY THE UTILITY COMPANIES, AS REQUIRED.	25.
	WHERE AN EXISTING UTILITY IS FOUND TO CONFLICT WITH THE PROPOSED WORK, THE LOCATION, ELEVATION AND SIZE OF THE UTILITY SHALL BE ACCURATELY DETERMINED WITHOUT DELAY BY THE CONTRACTOR AND THE INFORMATION SHALL BE PROVIDED ON A SKETCH TO SCALE OF THE EXISTING UTILITY WITH TIES TO KNOWN POINTS, PHOTOS AND FURNISHED TO THE ENGINEER FOR RESOLUTION.	26.
	THE CONTRACTOR SHALL PROTECT ALL UNDERGROUND DRAINAGE, SEWER AND UTILITY FACILITIES FROM EXCESSIVE VEHICULAR LOADS DURING CONSTRUCTION. ANY DAMAGE TO THESE FACILITIES RESULTING FROM CONSTRUCTION LOADS SHALL BE RESTORED TO ORIGINAL CONDITION.	<u>ST(</u>
	GAS, ELECTRIC, AND COMMUNICATIONS ROUTING ARE SUBJECT TO REVIEW AND APPROVAL BY APPROPRIATE UTILITY COMPANIES.	<u>DURI</u> 1.
	DURING CONSTRUCTION OPERATIONS, THE CONTRACTOR SHALL PROTECT EXISTING UTILITIES BY PROVIDING TEMPORARY SUPPORTS OR SHEETING AS REQUIRED AT NO ADDITIONAL COST TO THE OWNER.	
).	ALL GRAVITY SANITARY PIPING SHALL BE SDR-35 PVC. ALL SEWER CONSTRUCTION SHALL CONFORM TO THE TOWN OF NORTHBOROUGH WATER AND SEWER COMMISSION REGULATIONS.	2.
1.	ALL WATER LINE BENDS AND TEES SHALL BE REINFORCED WITH THRUST BLOCKS. ALL WATER DISTRIBUTION PIPING AND FITTINGS MUST ADHERE TO THE TOWN OF NORTHBOROUGH WATER AND SEWER COMMISSION REGULATIONS SPECIFICATIONS AND SHALL BE INSPECTED BEFORE, DURING, AND AFTER CONSTRUCTION PRIOR TO TAPPING THE SERVICE MAIN.	3.
2.	EXCAVATION REQUIRED WITHIN THE PROXIMITY OF EXISTING UTILITY LINES SHALL BE DONE BY HAND. CONTRACTOR SHALL REPAIR ANY DAMAGE TO EXISTING UTILITY LINES OR STRUCTURES INCURRED DURING CONSTRUCTION OPERATIONS AT NO COST TO THE OWNER.	4.
3.	PITCH EVENLY BETWEEN SPOT GRADES. ALL PAVED AREAS MUST PITCH TO DRAIN AT A MIN. OF 1/8" PER FOOT UNLESS SPECIFIED.	5.
1.	THE PROPOSED WALKWAYS SHALL HAVE A MAXIMUM CROSS SLOPE OF 2% AND A MAXIMUM RUNNING SLOPE OF 5% AS SHOWN ON CONSTRUCTION DETAILS AND GRADING PLAN.	POST
SΤ/	ATE RIGHT-OF-WAY NOTES	<u>1.</u>
	ALL WORK TO BE PERFORMED WITHIN THE COMMON WEALTH OF MASSACHUSETTS PUBLIC RIGHT-OF-WAY (ROW) SHALL CONFORM TO THE MASSDOT STANDARD SPECIFICATIONS FOR HIGHWAYS AND BRIDGE CONSTRUCTION, 1988 EDITION OR LATEST REVISION, AND THE MASSACHUSETTS DEPARTMENT OF TRANSPORTATION CONSTRUCTION STANDARD DETAILS.	2.
	THE CONTRACTOR SHALL APPLY FOR AND OBTAIN A UTILITY PERMIT FROM THE MASSDOT FOR UTILITY WORK WITHIN THE PUBLIC ROW AND MAKE ALL NECESSARY CONSTRUCTION NOTIFICATIONS, PAY ALL FEES AND POST ALL BONDS ASSOCIATED WITH THE SAME, AND COORDINATE WITH THE ENGINEER AND OWNER'S REPRESENTATIVE AS REQUIRED.	3.
i.	THE CONTRACTOR SHALL PREPARE A TRANSPORTATION MANAGEMENT PLAN INCLUDING A TEMPORARY TRAFFIC CONTROL PLAN AS REQUIRED FOR THE MASSDOT UTILITY PERMIT APPLICATION AT NO ADDITIONAL EXPENSE TO THE OWNER.	
4.	ALL TEMPORARY TRAFFIC CONTROLS SHALL BE IN ACCORDANCE WITH THE "MANUAL OF UNIFORM TRAFFIC CONTROL DEVICES" (MUTCD), LATEST REVISION.	

5. PRIOR TO CONSTRUCTION, THE CONTRACTOR SHALL SUBMIT A COPY OF THE STATE HIGHWAY ACCESS PERMIT TO THE TOWN OF NORTHBOROUGH

SION AND SEDIMENTATION CONTROL NOTES - MASSACHUSETTES

THE CONTRACTOR SHALL BE RESPONSIBLE FOR ESTABLISHING AND MAINTAINING ALL TEMPORARY SOIL EROSION AND SEDIMENT CONTROLS IN ACCORDANCE WITH THE ENVIRONMENTAL PROTECTION AGENCY'S (EPA) NATIONAL POLLUTANT DISCHARGE ELIMINATION SYSTEM (NPDES) CONSTRUCTION GENERAL PERMIT (CGP) AND THE CONTRACT DOCUMENTS.

THE CONTRACTOR SHALL PREPARE AND SUBMIT A STORMWATER POLLUTION PREVENTION PLAN (SWPPP) TO THE TOWN OF NORTHBOROUGH CONSERVATION COMMISSION FOR APPROVAL PRIOR TO THE PRE-CONSTRUCTION MEETING. THE SWPPP SHALL INCLUDE: **OPERATION AND MAINTENANCE OF PERIMETER CONTROLS**

- TEMPORARY STABILIZATION WITHIN 14 DAYS OF NO ACTIVITY
- INSPECTION/REPORTING FREQUENCY EXIT TRACKING
- 2 YR STORM CONTROLS
- CONSTRUCTION SEQUENCING
- TEMPORARY STABILIZATION PRACTICES

SWALES/BERMS AND TEMPORARY SEDIMENT TRAPS ON THE PLAN SUCH THAT IT WILL CONFIRM THEIR CAPACITY TO CAPTURE AT LEAST 3,600 CF/ACRE OF ALTERED AREA

SOIL EROSION AND SEDIMENTATION CONTROLS SHALL BE PROVIDED IN ACCORDANCE WITH THE "MASSACHUSETTS EROSION AND SEDIMENT CONTROL GUIDELINES FOR URBAN AND SUBURBAN AREAS" AND THE NOTES AND DETAILS SHOWN IN THIS PLAN SET.

THE EROSION AND SEDIMENTATION CONTROLS SHOWN ON THE PLANS ARE INTENDED TO REPRESENT THE MINIMUM CONTROLS NECESSARY TO MEET ANTICIPATED SITE CONDITIONS. ADDITIONAL MEASURES SHALL BE IMPLEMENTED AS CONDITIONS WARRANT OR AS DIRECTED BY THE OWNER OR OWNER'S REPRESENTATIVE.

PRIOR TO THE START OF CONSTRUCTION: PERIMETER SEDIMENT CONTROLS MUST BE INSPECTED AND APPROVED BY THE TOWN OF NORTHBOROUGH'S CONSERVATION COMMISSION. REQUIRED PERIMETER CONTROL SHALL BE PROPERLY ESTABLISHED, CLEARLY VISIBLE AND IN OPERATION PRIOR TO NITIATING ANY LAND CLEARING ACTIVITY AND/OR OTHER CONSTRUCTION RELATED WORK. SUCH FACILITIES SHALL REPRESENT THE LIMIT OF WORK. WORKERS SHALL BE INFORMED THAT NO CONSTRUCTION ACTIVITY IS TO OCCUR BEYOND THE LIMIT OF WORK AT ANY TIME THROUGHOUT THE CONSTRUCTION PERIOD.

AS FEASIBLE, CONSTRUCTION SHALL BE PHASED TO LIMIT THE AREA OF EXPOSED SOIL AND THE DURATION OF EXPOSURE. ALL DISTURBED AREAS SHALL BE TEMPORARILY AND/OR PERMANENTLY STABILIZED WITHIN 14 DAYS FOLLOWING COMPLETION OF GRADING ACTIVITIES.

THE CONTRACTOR SHALL INSPECT AND MAINTAIN ALL EROSION AND SEDIMENTATION CONTROL MEASURES IN ACCORDANCE WITH THE CONTRACT DOCUMENTS.

EROSION AND SEDIMENTATION CONTROL MEASURES SHALL BE INSPECTED AND MAINTAINED ON A WEEKLY BASIS AND AFTER EACH STORM EVENT OF 25 INCH OR GREATER DURING CONSTRUCTION TO ENSURE THAT THE EROSION CONTROL BARRIERS ARE INTACT.

CLEAN AND MAINTAIN SEDIMENTATION CONTROL BARRIERS WHEN SEDIMENT ACCUMULATES TO ONE HALF THE HEIGHT OF THE BARRIER. MATERIAL COLLECTED FROM THE SEDIMENTATION BARRIER SHALL BE REMOVED AS NECESSARY AND DISPOSED IN AN UPLAND AREA.

THE CONTRACTOR SHALL MAINTAIN A SUFFICIENT RESERVE OF VARIOUS EROSION CONTROL MATERIALS ONSITE AT ALL TIMES FOR EMERGENCY PURPOSES OR ROUTINE MAINTENANCE.

THE CONTRACTOR SHALL SCHEDULE HIS WORK TO ALLOW THE FINISHED SUB GRADE ELEVATIONS TO DRAIN PROPERLY WITHOUT PUDDLING. SPECIFICALLY, ALLOW WATER TO ESCAPE WHERE PROPOSED CURB MAY RETAIN RUNOFF PRIOR TO PAVING. PROVIDE TEMPORARY POSITIVE DRAINAGE, AS REQUIRED, TO STABILIZED DISCHARGE POINTS.

SOIL AND OTHER MATERIALS RESULTING FROM SITE CLEARING MAY BE RECYCLED AND/OR REUSED ON THE SITE AS APPROPRIATE. WASTE MATERIALS SHALL BE REMOVED FROM THE SITE.

CRUSHED STONE CONSTRUCTION ENTRANCES SHALL BE ESTABLISHED AT ALL POINTS OF INGRESS AND EGRESS.

FEMPORARY DIVERSIONS (TD) MAY CONSIST OF A DITCH OR SWALE, OR MAY BE ACHIEVED USING WOOD CHIP PILES, COIR LOGS, OR SIMILAR MATERIALS. DIVERSIONS MUST BE STABLE AND SHALL NOT SCOUR.

FEMPORARY SEDIMENT TRAPS (TST) AND TEMPORARY SWALES (TS) SHALL BE SIZED BY THE CONTRACTOR USING THE PARAMETERS CONTAINED IN THE MASSACHUSETTS EROSION AND SEDIMENT CONTROL GUIDELINES.

DUST SHALL BE CONTROLLED BY SPRINKLING OR OTHER APPROVED METHODS AS NECESSARY, OR AS DIRECTED BY THE OWNER OR OWNER'S REPRESENTATIVE.

CATCH BASINS AND STORM DRAINS SHALL BE PROTECTED WITH STRAW BALES OR SEDIMENT BAGS IN PAVED AREAS UNTIL CONTRIBUTING AREA IS PERMANENTLY STABILIZED.

DEWATERING WASTEWATER PUMPED FROM EXCAVATIONS SHALL BE CONVEYED BY HOSE TO AN UPLAND AREA AND DISCHARGED INTO A DEWATERING BASIN, HAY BALE CORRALS, OR SEDIMENTATION BAGS.

CONSTRUCTION SITE WASTE MATERIALS SHALL BE PROPERLY CONTAINED ONSITE AND DISPOSED OFF SITE AT A LOCATION IN ACCORDANCE WITH THE OCAL AND STATE REGULATIONS.

RIPRAP OR OTHER ENERGY DISSIPATERS SHALL BE USED WHERE NECESSARY TO CONTROL EROSION.

ANY EQUIPMENT THAT IS NOT READILY MOBILE (TRACK MACHINERY) SHALL BE PARKED WITHIN THE PROJECT LIMIT OF DISTURBANCE. LARGE AND/OR BULKY MATERIALS SHALL BE STORED SUCH THAT THEY DO NOT INTERFERE WITH THE ONGOING CONSTRUCTION ACTIVITIES OR EROSION CONTROL MEASURES.

NEWLY VEGETATED AREAS SHALL BE REGULARLY INSPECTED AND MAINTAINED TO ENSURE THE ESTABLISHMENT OF STABLE VEGETATED SURFACES.

THE CONTRACTOR SHALL NOT REMOVE ANY COMPOST FILTER SOCKS OR OTHER EROSION CONTROLS UNTIL THE CONTRIBUTING AREA IS PERMANENTLY STABILIZED AND THE CONTRACTOR HAS APPROVAL FROM THE TOWN OF NORTHBOROUGH'S CONSERVATION COMMISSION.

ALL DRAINAGE STRUCTURES SHALL BE CLEARED OF ACCUMULATED SEDIMENT PRIOR TO ACCEPTANCE OF THE FINAL PROJECT. THE CONTRACTOR SHALL SCHEDULE HIS WORK TO ALLOW THE FINISHED SUB GRADE ELEVATIONS TO DRAIN PROPERLY WITHOUT PONDING. SPECIFICALLY, ALLOW WATER TO ESCAPE WHERE PROPOSED CURB MAY RETAIN RUNOFF PRIOR TO APPLICATION OF SURFACE PAVING. PROVIDE TEMPORARY POSITIVE DRAINAGE, AS REQUIRED, TO STABILIZED DISCHARGE POINTS.

NSTALLATION OF THE EROSION CONTROL BARRIERS AS ILLUSTRATED IS INTENDED TO REPRESENT THE MINIMUM SEDIMENTATION CONTROL FACILITIES VECESSARY TO MEET ANTICIPATED SITE CONDITIONS. ADDITIONAL EROSION CONTROL MEASURES SHALL BE IMPLEMENTED AS CONDITIONS WARRANT OR AS DIRECTED BY THE OWNER OR OWNER'S REPRESENTATIVE.

ALL DISTURBED AREAS SHALL BE STABILIZED WITHIN 14 DAYS UPON COMPLETION OF WORK IN THAT AREA.

RMWATER MANAGEMENT SYSTEM INSPECTION AND MAINTENANCE NOTES

G CONSTRUCTION (CONTRACTOR'S RESPONSIBILITY)

HE CONTRACTOR SHALL REMOVE SEDIMENT AND DEBRIS FROM ALL CATCH BASINS, MANHOLES, AND THE DRAINAGE SYSTEM ON A ROUTINE BASIS, MEDIATELY FOLLOWING SITE STABILIZATION, AND PRIOR TO PROJECT COMPLETION AND ACCEPTANCE.

HE CLOSED DRAINAGE SYSTEM AND ASSOCIATED STRUCTURES SHALL BE CLEANED AND FLUSHED BY THE CONTRACTOR AT THE COMPLETION OF ONSTRUCTION, AND THE CONTRACTOR SHALL BE RESPONSIBLE FOR INSPECTION AND MAINTENANCE OF THE DRAINAGE SYSTEM UNTIL ACCEPTANCE F THE SYSTEM BY THE ENGINEER AND THE TOWN OF NORTHBOROUGH. FOLLOWING ACCEPTANCE OF THE PROPOSED DRAINAGE SYSTEM, THE OWNER F THE SITE SHALL BE RESPONSIBLE FOR THE LONG-TERM INSPECTION AND MAINTENANCE OF THE DRAINAGE SYSTEM.

NY ACCUMULATION OF PONDING WATER IN AREAS WITHIN THE LIMITS OF DISTURBANCE, OTHER THAN DESIGNATED AREAS, SHALL BE REMOVED CCORDINGLY AND PREVENTED IN THE FUTURE.

HE CONTRACTOR SHALL PREVENT ANY VISIBLY TURBID STORMWATER DISCHARGE FROM THE SITE.

HE CONTRACTOR SHALL PROVIDE OPERATIONS AND MAINTENANCE INSPECTION REPORTS TO THE TOWN OF NORTHBOROUGH WITH AS BUILT PLANS RIOR TO THE ISSUANCE OF OCCUPANCY PERMIT.

CONSTRUCTION (OWNER'S RESPONSIBILITY)

RASH, LITTER, SEDIMENT AND OTHER DEBRIS SHALL BE REMOVED FROM ANY STORMWATER MANAGEMENT SYSTEM FACILITY (INCLUDING BUT NOT MITED TO CATCH BASINS, MANHOLES, INLET, OUTLET AND DIVERSION STRUCTURES, AND STORMWATER BEST MANAGEMENT PRACTICES (BMPs)) A INIMUM OF TWO TIMES PER YEAR , PREFERABLY IN THE SPRING AND FALL.

HE PARKING LOT AND ENTRY DRIVE SHALL BE SWEPT BY THE OWNER AS EARLY AS POSSIBLE EVERY SPRING AND ONCE IN THE FALL TO REMOVE EDIMENTS.

L CLEANING AND MAINTENANCE OF STORMWATER MANAGEMENT SYSTEMS POST-CONSTRUCTION SHALL BE THE RESPONSIBILITY OF THE OWNER.

REPAIR NOTES

OWNER.

- 2. FOLLOWING STORM EVENTS WITH RAINFALL EXCEEDING 2.7" SHALL BE REPAIRED BY THE OWNER.
- 3. BI-ANNUALLY

CATCH BASINS WITH SUMPS INSPECTION, MAINTENANCE, AND REPAIR NOTES

1. INSPECTIONS SHALL BE PERFORMED A MINIMUM OF TWO TIMES PER YEAR (SPRING/FALL). UNITS SHALL BE CLEANED ANNUALLY AND WHENEVER THE DEPTH OF SEDIMENT IS GREATER THAN OR EQUAL TO HALF THE SUMP DEPTH.

2. THE INLET GRATE SHALL NOT BE WELDED TO THE FRAME OR PAVED OVER SO THAT THE SUMP CAN BE EASILY INSPECTED AND MAINTAINED.

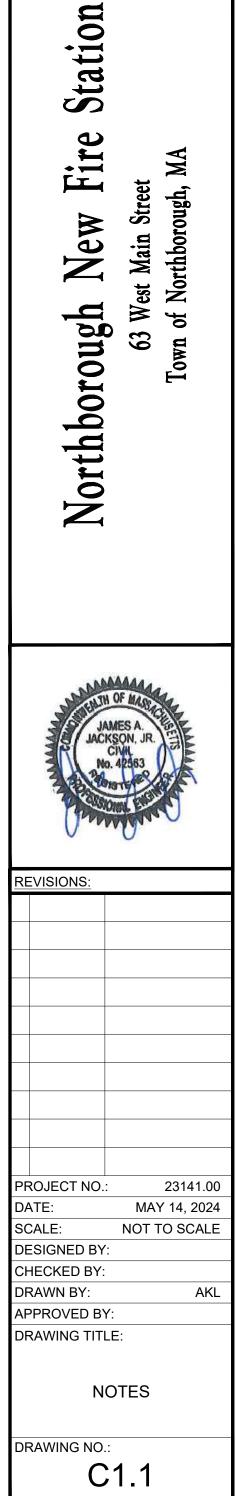
3. CARE SHALL BE TAKEN TO AVOID DAMAGING AND DISPLACING HOODS PLACED ON HOODED OUTLETS DURING CLEANING.

UNDERGROUND INFILTRATION/DETENTION SYSTEM BASIN INSPECTION, MAINTENANCE, AND

FOLLOWING CONSTRUCTION, THE COMPLETION OF THE INSPECTION AND MAINTENANCE REQUIREMENTS BELOW SHALL BE THE RESPONSIBILITY OF THE

1. THE SYSTEM SHALL BE MAINTAINED AS RECOMMENDED BY THE MANUFACTURER AND AS SPECIFIED IN THE OPERATION AND MAINTENANCE PLAN.

INSPECT INFILTRATION/DETENTION SYSTEM FOR TRASH, DEBRIS, SEDIMENT, EROSION, STANDING WATER, AND OVERALL PERFORMANCE. DEFECTS


• INSPECTIONS SHALL BE PERFORMED A MINIMUM OF TWO TIMES PER YEAR ON THE INSPECTION PORTS AND DRAINAGE STRUCTURES OF THE UNDERGROUND INFILTRATION/DETENTION SYSTEM TO ENSURE PROPER OPERATION OF THE SYSTEM.

4. JETVAC MAINTENANCE IS RECOMMENDED IF SEDIMENT HAS BEEN COLLECTED TO A DEPTH OF 3" IN THE PRETREATMENT ROW. MORE FREQUENT MAINTENANCE MAY BE REQUIRED TO MAINTAIN MINIMUM FLOW RATES THROUGH THE PRETREATMENT ROW. THE JETVAC PROCESS SHALL ONLY BE PERFORMED ON THE PRETREATMENT ROW. JETVAC MAINTENANCE SHALL BE IN ACCORDANCE WITH PRODUCT MANUFACTURER'S RECOMMENDATIONS.

SCALE ADJUSTMENT GUIDE

BAR IS ONE INCH ON ORIGINAL DRAWING

SHEET NO. 2 OF

NOT FOR CONSTRUCTION

ABBREVIATIONS	3
---------------	---

ABBREVIA	TIONS
GENERAL	
AADT	ANNUAL AVERAGE DAILY TRAFFIC
ABAN	ABANDON
ADA	AMERICANS WITH DISABILITIES ACT
ADJ	ADJUST
APPROX	APPROXIMATE
AC	
	ASPHALT COATED CORRUGATED METAL PIPE
ASSF ATD	AREA SUBJECT TO STORM FLOWAGE ASPHALT TURNDOWN
ATG	ADJUST TO GRADE
BB	BITUMINOUS BERM
BC	BOTTOM OF CURB (FINISHED GRADE ON LOW SIDE OF CURB)
BD	BOUND
BIT	BITUMINOUS
BL	BASELINE
BLDG BM	BUILDING BENCHMARK
BMP	BEST MANAGEMENT PRACTICE
во	BY OTHERS
BOL	BOLLARD
BOS	BOTTOM OF SLOPE
BOT	BOTTOM
BPM BR	BLACKOUT PAVEMENT MARKING BRIDGE
BS	BOTTOM OF STAIR (FINISHED GRADE AT BOTTOM STAIR)
BW	BOTTOM OF WALL (FINISHED GRADE ON LOW SIDE OF WALL)
BWL	BROKEN WHITE LINE
BYL	BROKEN YELLOW LINE
C=	CURVE LENGTH
CB	
CBCI CC	CATCH BASIN WITH CURB INLET CEMENT CONCRETE
CCM	CEMENT CONCRETE MASONRY
CCW	CEMENT CONCRETE WALK
CD	CHECK DAM
CE	CONSTRUCTION ENTRANCE
CEM	CEMENT
CFS	COMPOST FILTER SOCK
CG CH	CLEAR AND GRUB VEGETATION CHORD LENGTH
CI	CURB INLET
CIP	CAST IRON PIPE
CJ	CONSTRUCTION JOINT
CL	CENTERLINE
CLDI	CEMENT-LINED DUCTILE IRON
CLF	
CLSM CLR	CONTROLLED LOW STRENGTH MATERIAL CLEAR
CLS	CLASS
СМ	SAWCUT AND MATCH
CMP	CORRUGATED METAL PIPE
CO	CLEANOUT
CONC	CONCRETE
CONT CONST	CONTINUOUS CONSTRUCTION
CONST	CONCRETE PAD
CR GR	CROWN GRADE
CSP	CORRUGATED STEEL PIPE
CSTR	CONCRETE STAIRS
CTE	CONNECT TO EXISTING
CW DEMO	CROSSWALK DEMOLITION
DEMO	DETECTABLE
DHV	DESIGN HOURLY VOLUME
DI	DROP INLET
DIA	DIAMETER
DIP	DUCTILE IRON PIPE
	DIVERSION DRAIN MANHOLE
DMH DTP	DRAIN MANHOLE DRIPLINE TREE PROTECTION
DWL	DOTTED WHITE LINE
DWLEx	DOTTED WHITE LINE EXTENSION
DBWL	DOUBLE WHITE LINE
DWP	DETECTABLE WARNING PAVER
DYL	DOTTED YELLOW LINE
	DOTTED YELLOW LINE EXTENSION
DBYL DW	DOUBLE YELLOW LINE STEADY DON'T WALK - PORTLAND ORANGE
DWY	DRIVEWAY
EJ	EXPANSION JOINT
ELEV (or EL)	ELEVATION
EMB	
EMH	
EOP ETR	EDGE OF PAVEMENT EXISTING TO REMAIN. PROTECT DURING CONSTRUCTION.
.	

EXIST (or EX)	
EXC	EXISTING EXCAVATION
F&C	FRAME AND COVER
F&G FDC	FRAME AND GRATE FIRE DEPARTMENT CONNECTION
FDC	FOUNDATION
FES	FLARED END SECTION
FFE FLDSTN	FINISH FLOOR ELEVATION FIELDSTONE
FND	FOUND
FT	FOOT
GAR GD	GARAGE GROUND
GG	GAS GATE
GI	GUTTER INLET
GIP GRAN	GALVANIZED IRON PIPE GRANITE
GRAV	GRAVEL
GRD	GUARD
GTD GV	GRADE TO DRAIN GATE VALVE
HCPS	HANDICAP ACCESSIBLE PARKING SIGN
HDBC	HEAVY DUTY BITUMINOUS CONCRETE
HDPE HDPS	HIGH DENSITY POLYETHYLENE PIPE HANDICAP ACCESSIBLE PARKING SIGN
HDW	HEADWALL
HMA	HOT MIX ASPHALT
HMAW HOR	HOT MIXED ASPHALT WALKWAY HORIZONTAL
HPR	HEADWALL PROTECTION RACK
HYD	HYDRANT
ID INV	INSIDE DIAMETER INVERT
JCT	JUNCTION
L=	LENGTH OF CURVE
LB LOD	LEACH BASIN LIMIT OF DISTURBANCE
LP	LOW POINT
LPR	LICENSE PLATE READER
LS LSOD	LOAM AND SEED LOAM AND SOD
LT	LEFT
LTP	LIGHT POLE
MAX MB	MAXIMUM MAILBOX
MCW	MONOLITHIC CONCRETE WALK
MH	MANHOLE
MIN MON	MINIMUM MONITORING
MUTCD	MANUAL OF UNIFORM TRAFFIC CONTROL DEVICES, LATEST EDITION
NIC	
NO NTS	NUMBER NOT TO SCALE
OCS	OUTLET CONTROL STRUCTURE
OD	
OSHA OWS	OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION OIL WATER SEPARATOR
PC	POINT OF CURVATURE
PCC	POINT OF COMPOUND CURVATURE
PCFES PCTC	PRECAST CONCRETE FLARED END SECTION PRECAST CONCRETE TRANSITION CURB
PCR	PEDESTRIAN CURB RAMP
PE	POLYETHYLENE
PERF PGL	PERFORATED PROFILE GRADE LINE
PHMA	POROUS HOT MIXED ASPHALT PAVEMENT
PI	POINT OF INTERSECTION
PIV POC	POST INDICATOR VALVE POINT ON CURVE
POT	POINT ON TANGENT
PM	
PRC PROJ	POINT OF REVERSE CURVATURE PROJECT
PROP	PROPOSED
PSB	PLANTABLE SOIL BORROW
PT PVC	POINT OF TANGENCY POINT OF VERTICAL CURVATURE
PVCH	POLYVINYL CHLORIDE
PVI	POINT OF VERTICAL INTERSECTION
PVT PVMT	POINT OF VERTICAL TANGENCY PAVEMENT
PWW	PAVED WATER WAY
QPA	QUALIFYING PERVIOUS AREA
R&D R&R	REMOVE AND DISPOSE REMOVE AND RESET
R&S	REMOVE AND STACK
R=	RADIUS
RA	RAILING

		CONSTRUCTION NOTES - MASSDO
RCP	REINFORCED CONCRETE PIPE	(106.3.0) = METHOD OF SETTING VER
RDWY REM	ROADWAY REMOVE	(107.2.0) = WHEELCHAIR RAMPS LES
RET	REMOVE	(107.2.1) = WHEELCHAIR RAMP ON N
RET WALL	RETAINING WALL	
RRLS ROW	RIPRAP LEVEL SPREADER RIGHT OF WAY	(107.6.0) = WHEELCHAIR RAMPS FOF
RR	RAILROAD	(107.6.5) = DETECTABLE WARNING P
RRS	RIPRAP SLOPE	(107.6.9) = WHEELCHAIR RAMP WITH
RS RT	RIPRAP SPILLWAY RIGHT	107.9.0 = CURB TRANSITION LENGT
RTAD	REFER TO ARCHITECTURAL DRAWINGS	201.4.0M = PRECAST CONCRETE CAT
RTED	REFER TO ELECTRICAL DRAWINGS	(201.6.0) = CATCH BASIN FRAME - MA
RTFPD RTLD	REFER TO FIRE PROTECTION DRAWINGS REFER TO LANDSCAPE DRAWINGS	(201.11.0) = DROP INLET GRATE - MAS
RTMD	REFER TO MECHANICAL DRAWINGS	(201.12.0) = CATCH BASIN HOOD - MA
RTPD	REFER TO PLUMBING DRAWINGS	
RTSD S=	REFER TO STRUCTURAL DRAWINGS SLOPE	(202.4.0) = PRECAST CONCRETE MAN
SB	SAND BAG EROSION CONTROL BARRIER	(204.2.0) = GUTTER INLET - MA STD. 2
SDR SED	STANDARD DIMENSIONAL RATIO SEDIMENT	(206.8.0) = REINFORCED CONCRETE
SESC	SOIL EROSION AND SEDIMENT CONTROL	(209.1.0) = SUBDRAIN - MA STD. 209.7
SFL	STATE FREEWAY LINE	
SFCD SG	SEDIMENT FOREBAY CHECK DAM SWING GATE	
SHL	STATE HIGHWAY LINE	
SHLD	SHOULDER	EXISTING
SHLO SHP	STATE HIGHWAY LAYOUT HANDICAP PARKING PAVEMENT MARKING	
SM	SEDIMENT MARKER	
SMH	SEWER MANHOLE	
SSD ST	STOPPING SIGHT DISTANCE STREET	<i>255</i>
STA	STATION	
SW SWL	SIDEWALK SINGLE SOLID WHITE LINE	X 407.5
SWL	SEWER	
SYL	SINGLE SOLID YELLOW LINE	
T= TAN	TANGENT DISTANCE OF CURVE/TRUCK % TANGENT	
TD	TEMPORARY DIVERSION	
TEMP	TEMPORARY	
TC TDS	TOP OF CURB TEMPORARY DIVERSION SWALE	
TGP	TREE GROUP PROTECTION	
TIP	TEMPORARY INLET PROTECTION	
TMH TOS	TELEPHONE MANHOLE TOP OF SLOPE	
TP	TEST PIT	
TRAN TRM	TRANSITION TURF REINFORCEMENT MAT	
TS	TOP OF STAIR (FINISHED GRADE OF TOP STAIR)	LIM
TST	TEMPORARY SEDIMENT TRAP	
TSW TW	TEMPORARY SWALE TOP OF WALL	$\sim \sim$
TYP	TYPICAL	\square
UP		S
VAR VERT	VARIES VERTICAL	
VC	VERTICAL CURVE	-0-
VCC		ŴG
VCP VFC	VEHICULAR CONCRETE PAVEMENT VITRIFIED CLAY	
VEG	VEGETATION	Ę
VEH VFS	VEHICULAR VEGETATED FILTER STRIP	
VF3 VGC	VERTICAL GRANITE CURB	
VGTC	VERTICAL GRANITE TRANSITION CURB	
VLF w/	VINYL FENCE WITH	
WG	WATER GATE	□
WIP		
WM WMH	WATER METER/WATER MAIN WATER MANHOLE	
WPM	WATER PAINT MARK	
X-SECT	CROSS SECTION	
YD 4DY	YARD DRAIN 4" DOUBLE YELLOW EPOXY RESIN PAVEMENT MARKING	
4W	4" SOLID WHITE EPOXY RESIN PAVEMENT MARKING	_O_
12W	12" SOLID WHITE EPOXY RESIN PAVEMENT MARKING	

MASSACHUSETTS ABBREVIATIONS

CODE OF MASSACHUSETTS REGULATIONS
MASSACHUSETTS DEPARTMENT OF ENVIRONMENTAL PROTECTION
MASSACHUSETTS DEPARTMENT OF TRANSPORTATION
MASSACHUSETTS STANDARD
MASSACHUSETTS HIGHWAY BOUND

CONSTRUCTION NOTES - MASSDOT STANDARDS HOD OF SETTING VERTICAL CURB - MA STD. 106.3.0 ELCHAIR RAMPS LESS THAN 12'-4" SIDEWALK - MA STD. 107.2.0 ELCHAIR RAMP ON NARROW SIDEWALK WITH DETECTABLE WARNING PANEL - MA STD. 107.2.1 ELCHAIR RAMPS FOR ONE CONTINUOUS DIRECTION OF PEDESTRIAN TRAVEL - MA STD. 107.6.0 CTABLE WARNING PANEL FOR WHEELCHAIR RAMPS - MA STD. 107.6.5 ELCHAIR RAMP WITH LANDSCAPING STRIP - MA STD. 107.6.9 3 TRANSITION LENGTH FOR WHEELCHAIR RAMPS - MA STD. 107.9.0 CAST CONCRETE CATCH BASIN - MA STD. 201.4.0 H BASIN FRAME - MA STD. 201.6.0 PINLET GRATE - MA STD. 201.11.0 BASIN HOOD - MA STD. 201.12.0 CAST CONCRETE MANHOLES 9' OR LESS IN DEPTH - MA STD. 202.4.0 FER INLET - MA STD. 204.2.0 FORCED CONCRETE PIPE FLARED ENDS - MA STD. 206.8.0 DRAIN - MA STD. 209.1.0 LEGEND PROPOSED PROPERTY LINE ____ ____ SETBACKS EASEMENT LINE _ ___ CONTOUR _____ 262 _____ · _ _ _ _ _ × 261.5 SPOT ELEVATION _____D _____D _____D _____ DRAINAGE LINE WATER LINE ——w-FIRE WATER LINE _____FW _____FW _____ SANITARY SEWER LINE _____S _____S _____S _____ GAS LINE _____G ______G _____ ELECTRIC ——Е ——Е —— ——Е — _____T _____T _____T _____T TELEPHONE LINE ------ OHW -------OVERHEAD ELECTRIC LINE LIMIT OF DISTURBANCE _____LOD _____ LIMIT OF DISTURBANCE/COMPOST FILTER SOCK — LOD/CFS — LOD/CFS — LOD/CFS

CATCH BASIN HYDRANT DRAINAGE MANHOLE SEWER MANHOLE UTILITY POLE WATER VALVE GAS GATE LIGHT POLE TREE LINE CHAIN LINK FENCE WIRE FENCE WOOD FENCE FENCE CURBING EDGE OF PAVEMENT SAWCUT LINE SIGN COMPOST FILTER SOCK

SAND BAGS

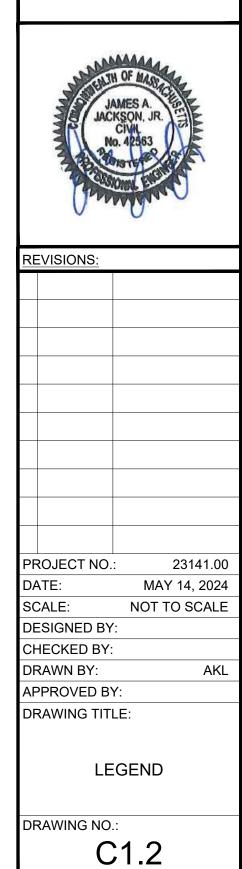
NO. OF PARKING SPACES

-0-M $\underbrace{}$ _____O____O____O_____ ____x____x____x____x____x____x____ $-\circ$ \circ \circ \circ \circ \circ

Ō

•

•


____**00____0**____ #

SCALE ADJUSTMENT GUIDE BAR IS ONE INCH ON

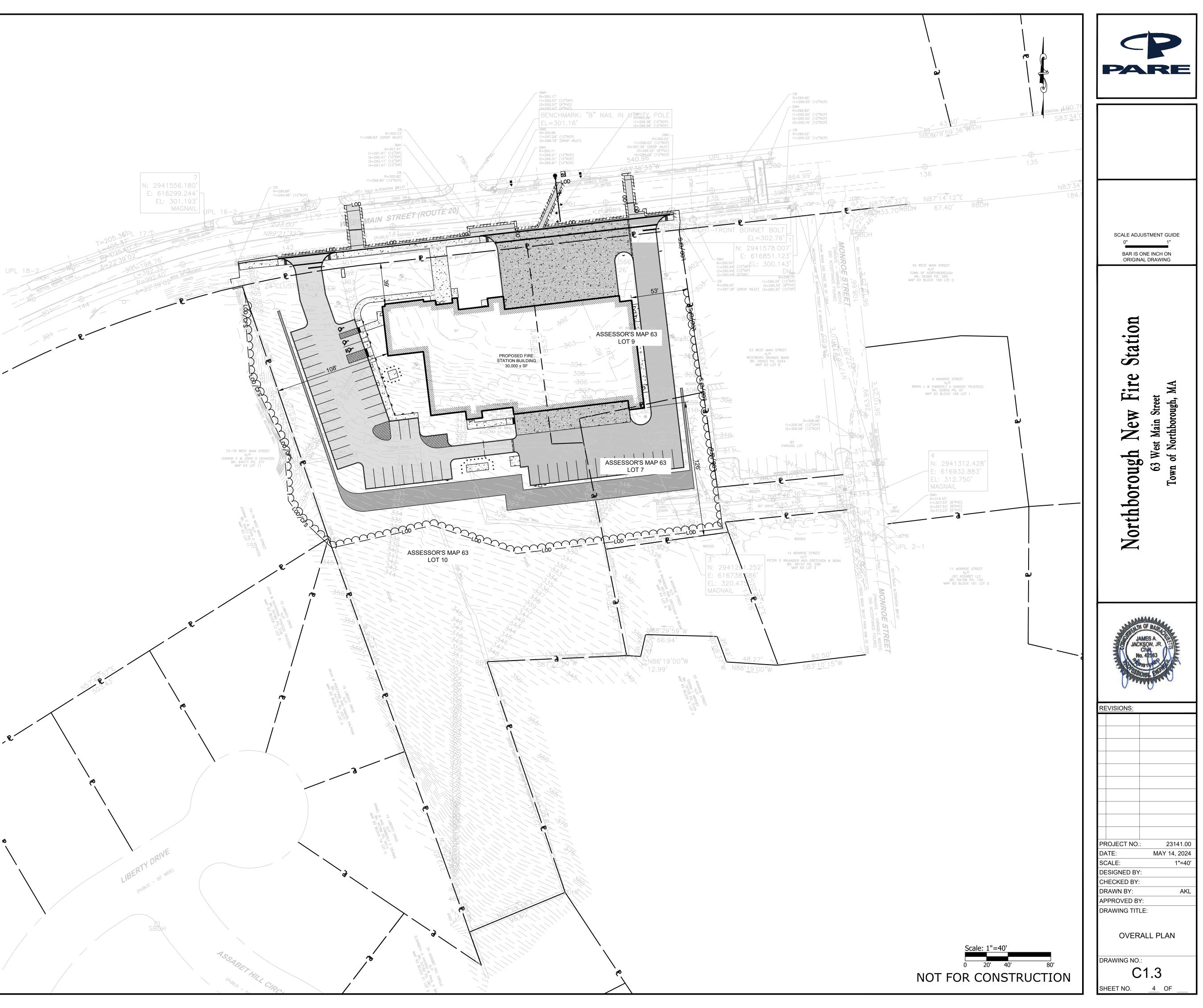
PARE

ORIGINAL DRAWING

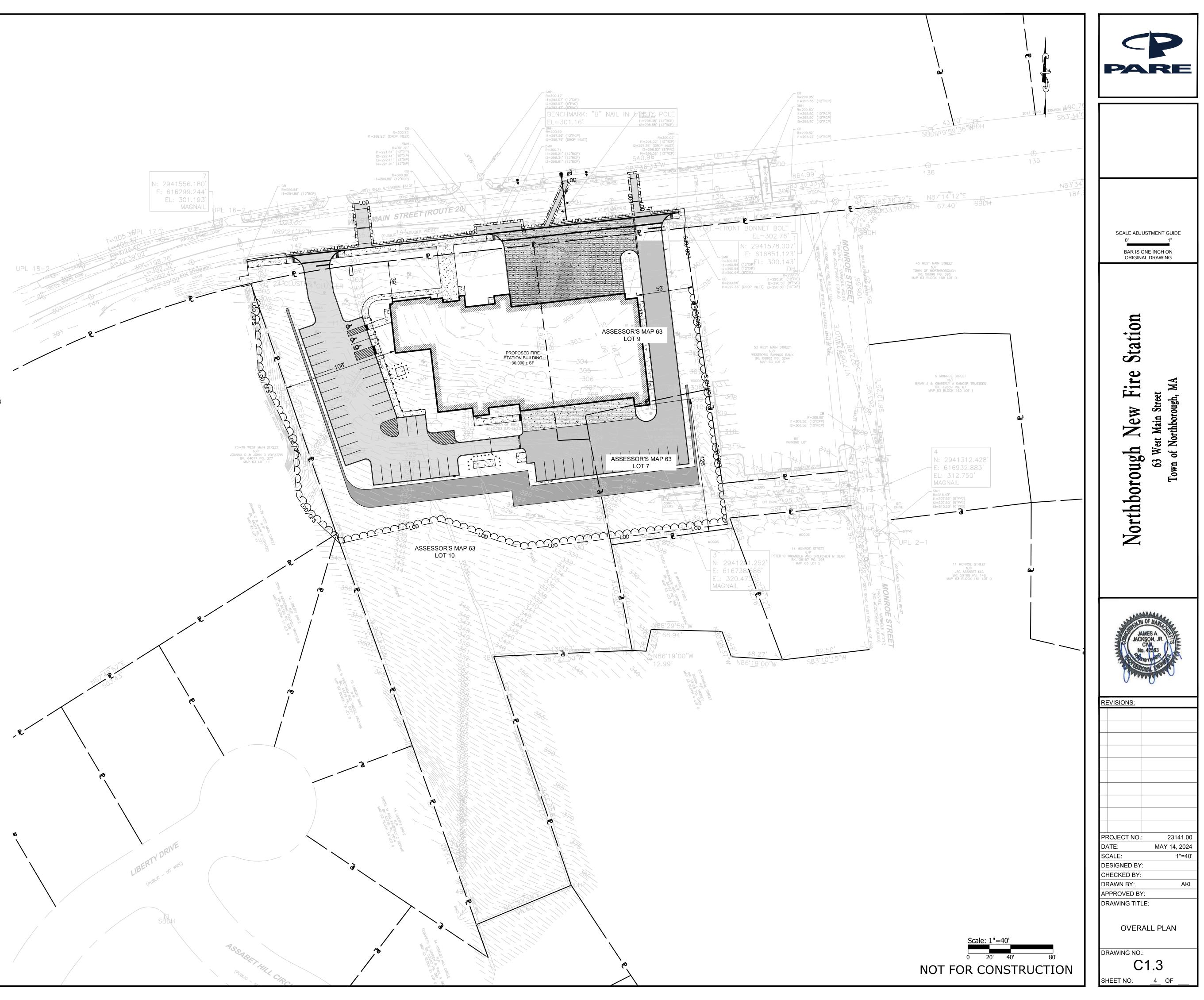
Station Fire MA :ough, New <u>St</u> /est Main Northbore Northborough of 63 Vn Lo

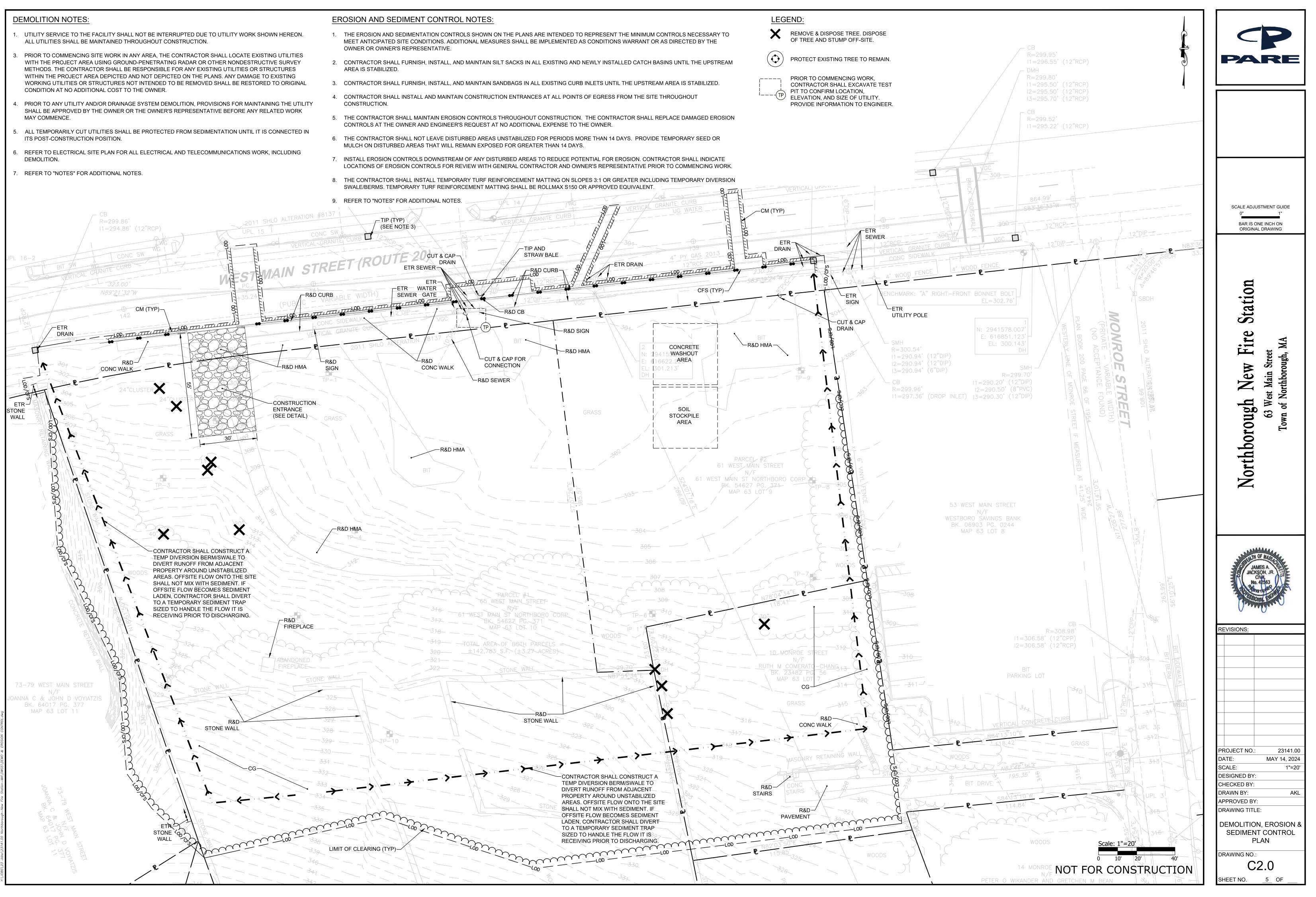
SHEET NO. 3 OF

NOT FOR CONSTRUCTION

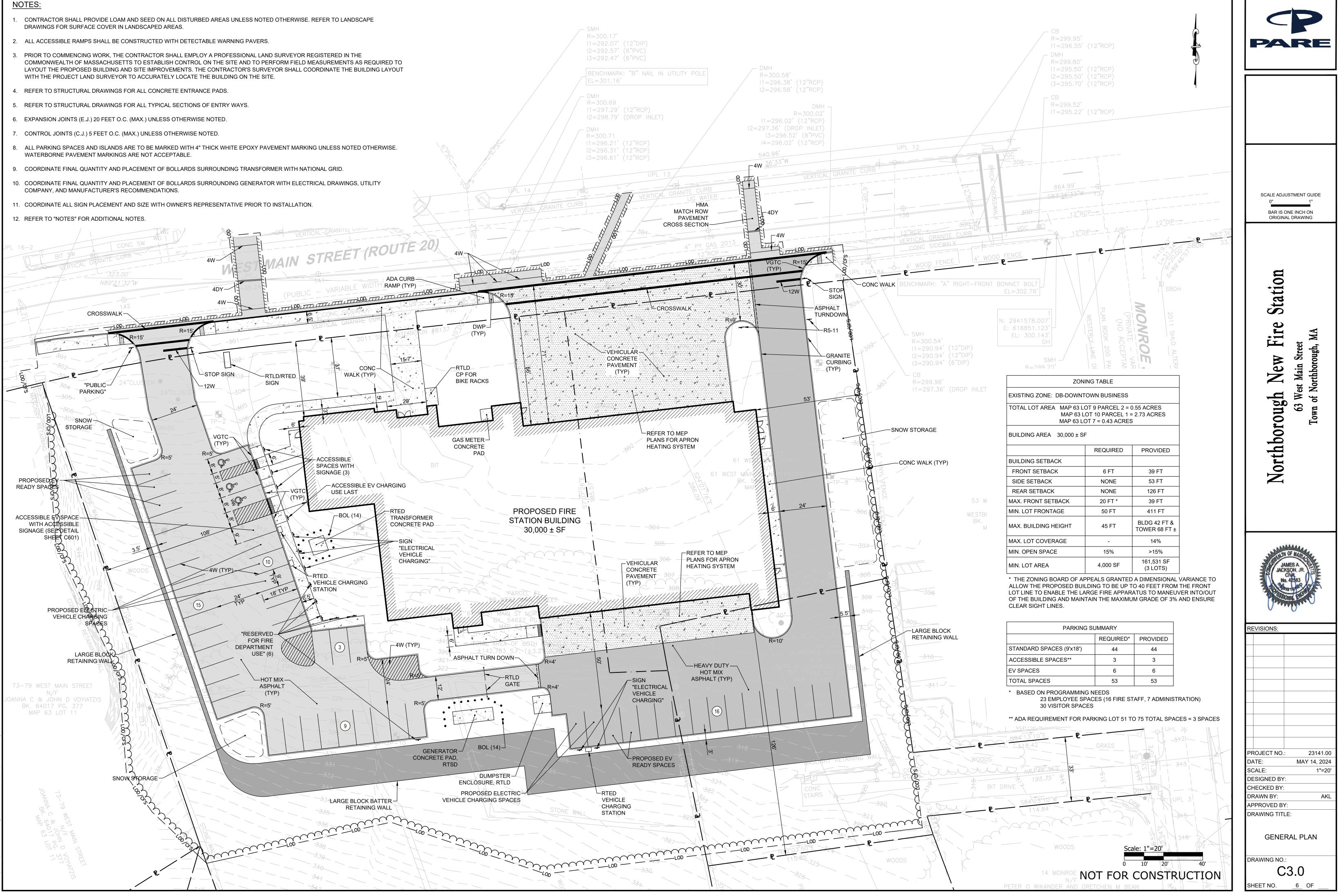

ZONING TABLE				
EXISTING ZONE: DB-DOWNT	OWN BUSINESS			
TOTAL LOT AREA MAP 63 LOT 9 PARCEL 2 = 0.55 ACRES MAP 63 LOT 10 PARCEL 1 = 2.73 ACRES MAP 63 LOT 7 = 0.43 ACRES				
BUILDING AREA 30,000 ± SP	-			
	REQUIRED	PROVIDED		
BUILDING SETBACK				
FRONT SETBACK	6 FT	39 FT		
SIDE SETBACK	NONE	53 FT		
REAR SETBACK	NONE	126 FT		
MAX. FRONT SETBACK	20 FT *	39 FT		
MIN. LOT FRONTAGE	50 FT	411 FT		
MAX. BUILDING HEIGHT	45 FT	BLDG 42 FT & TOWER 68 FT ±		
MAX. LOT COVERAGE	-	14%		
MIN. OPEN SPACE	15%	>15%		
MIN. LOT AREA	4,000 SF	161,531 SF (3 LOTS)		

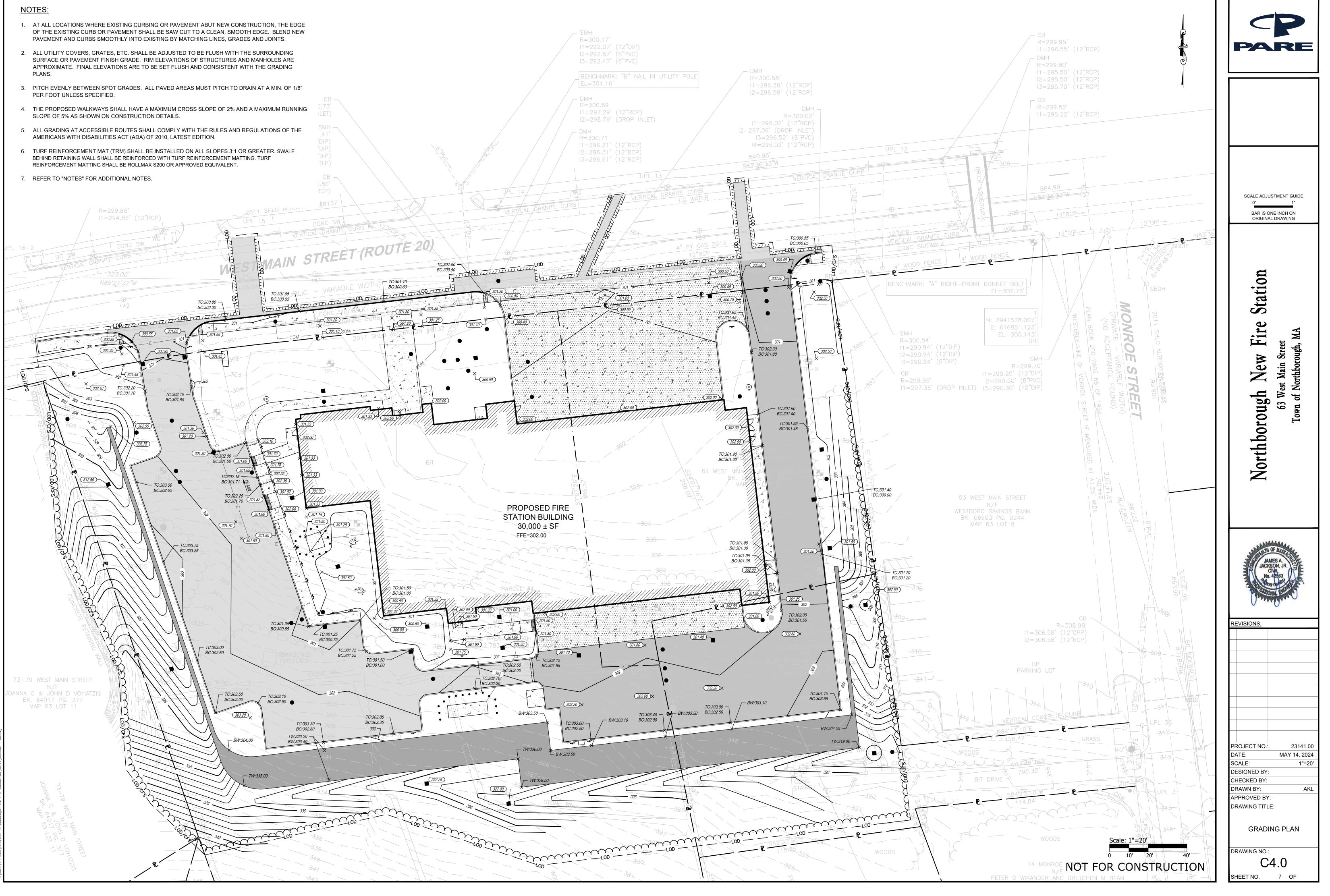
* THE ZONING BOARD OF APPEALS GRANTED A DIMENSIONAL VARIANCE TO ALLOW THE PROPOSED BUILDING TO BE UP TO 40 FEET FROM THE FRONT LOT LINE TO ENABLE THE LARGE FIRE APPARATUS TO MANEUVER INTO/OUT OF THE BUILDING AND MAINTAIN THE MAXIMUM GRADE OF 3% AND ENSURE CLEAR SIGHT LINES.

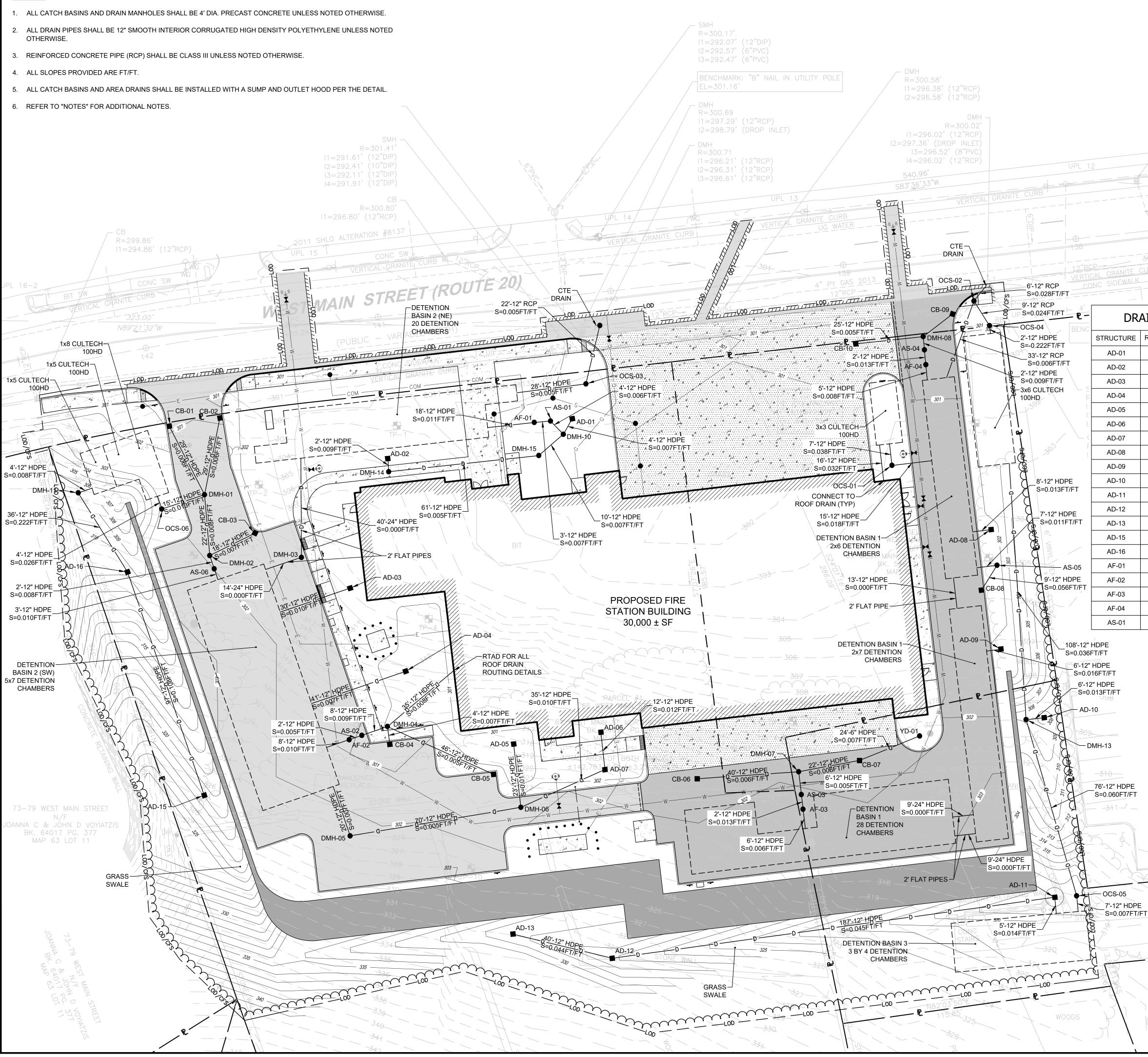

PARKING SUMMARY			
	REQUIRED*	PROVIDED	
STANDARD SPACES (9'x18')	44	44	
ACCESSIBLE SPACES**	3	3	
EV SPACES	6	6	
TOTAL SPACES	53	53	


* BASED ON PROGRAMMING NEEDS 23 EMPLOYEE SPACES (16 FIRE STAFF, 7 ADMINISTRATION) **30 VISITOR SPACES**

** ADA REQUIREMENT FOR PARKING LOT 51 TO 75 TOTAL SPACES = 3 SPACES






- DRAWINGS FOR SURFACE COVER IN LANDSCAPED AREAS.
- COMMONWEALTH OF MASSACHUSETTS TO ESTABLISH CONTROL ON THE SITE AND TO PERFORM FIELD MEASUREMENTS AS REQUIRED TO LAYOUT THE PROPOSED BUILDING AND SITE IMPROVEMENTS. THE CONTRACTOR'S SURVEYOR SHALL COORDINATE THE BUILDING LAYOUT WITH THE PROJECT LAND SURVEYOR TO ACCURATELY LOCATE THE BUILDING ON THE SITE.

- WATERBORNE PAVEMENT MARKINGS ARE NOT ACCEPTABLE.
- COMPANY, AND MANUFACTURER'S RECOMMENDATIONS.

DRAIN INVERT TABLE

1' WOOD FENCE

STRUCTURE	RIM (FT)	INV. IN (FT)	INV. OUT (FT)
AD-01	300.05		298.05 SW
AD-02	301.00		298.50 S
AD-03	301.00		297.80 W
AD-04	300.80		297.80 W
AD-05	300.50		298.35 S
AD-06	301.00		298.65 S
AD-07	301.50	298.45 N	298.45 SW
AD-08	301.50		296.60 W
AD-09	301.50		296.60 W
AD-10	311.94		304.00 W
AD-11	317.00	313.50 W	313.40 S
AD-12	327.00	322.10 W	322.00 E
AD-13	332.50		324.00 E
AD-15	325.50		319.50 N
AD-16	312.50	308.60 S	308.50 NW
AF-01	301.00	297.90 E	297.73 W
AF-02	301.05	297.77 E	297.60 W
AF-03	302.20	296.72 N	296.55 S
AF-04	301.00	296.72 N	296.55 S
AS-01	300.50	297.95 SE	297.95 W

DRAIN INVERT TABLE					
STRUCTURE	RIM (FT)	INV. IN (FT)	INV. OUT (FT)		
AS-02	300.95	297.80 E	297.80 W		
AS-03	302.00	296.80 N	296.80 S		
AS-04	298.74	296.80 N	296.80 S		
AS-05	300.95	296.70 SW	296.60 W		
AS-06	302.00	297.55 N	297.55 S		
CB-01	300.95		298.00 SE		
CB-02	300.95		298.00 S		
CB-03	301.30		297.75 SW		
CB-04	300.80		297.95 N		
CB-05	301.00		298.15 NW		
CB-06	301.40		297.10 E		
CB-07	301.40	299.00 E	297.00 W		
CB-08	300.90		297.40 NE		
CB-09	300.45		296.95 SW		
CB-10	300.40		297.00 E		
DMH-01	301.35	297.80 N 297.80 NW 297.85 W	297.80 S		
DMH-02	301.95	297.60 N 297.60 NE	297.60 S		
DMH-03	301.65	297.50 W	297.50 N		
DMH-04	301.25	297.90 S 297.90 SE 297.90 NE	297.90 W		
DMH-05	302.20	297.65 E	297.65 N		

12"DIP_____

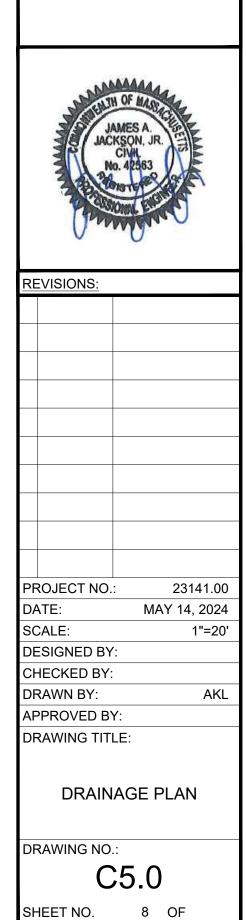
DRAIN INVERT TABLE

STRUCTURE	RIM (FT)	INV. IN (FT)	INV. OUT (FT)	
DMH-06	301.60	298.05 NE 298.05 N	298.05 W	
DMH-07	301.80	296.85 W 296.85 E	296.85 S	
DMH-08	300.60	296.85 W 296.85 NE	296.85 S	
DMH-10	307.00	298.00 NE 298.00 SW	298.00 NW	
DMH-11	307.00	299.65 SE	299.55 E	
DMH-13	309.00	305.25 S 303.90 E	303.90 N	
DMH-14	300.39	298.45 N	298.45 E	
DMH-15	300.04	298.10 W	298.10 NE	
EXISTING MANHOLE	299.15	297.21 S		
OCS-01	302.00	299.15 N	296.80 E	
OCS-02	300.75	296.30 S 297.00 SE	296.25 NE	
OCS-03	301.20	297.35 W	297.35 N	
OCS-04	302.50	300.00 S	297.30 NW	
OCS-05	318.30	309.95 S	309.95 N	
OCS-06	303.00	299.35 N	298.10 E	
YD-01	301.00		299.20 W	

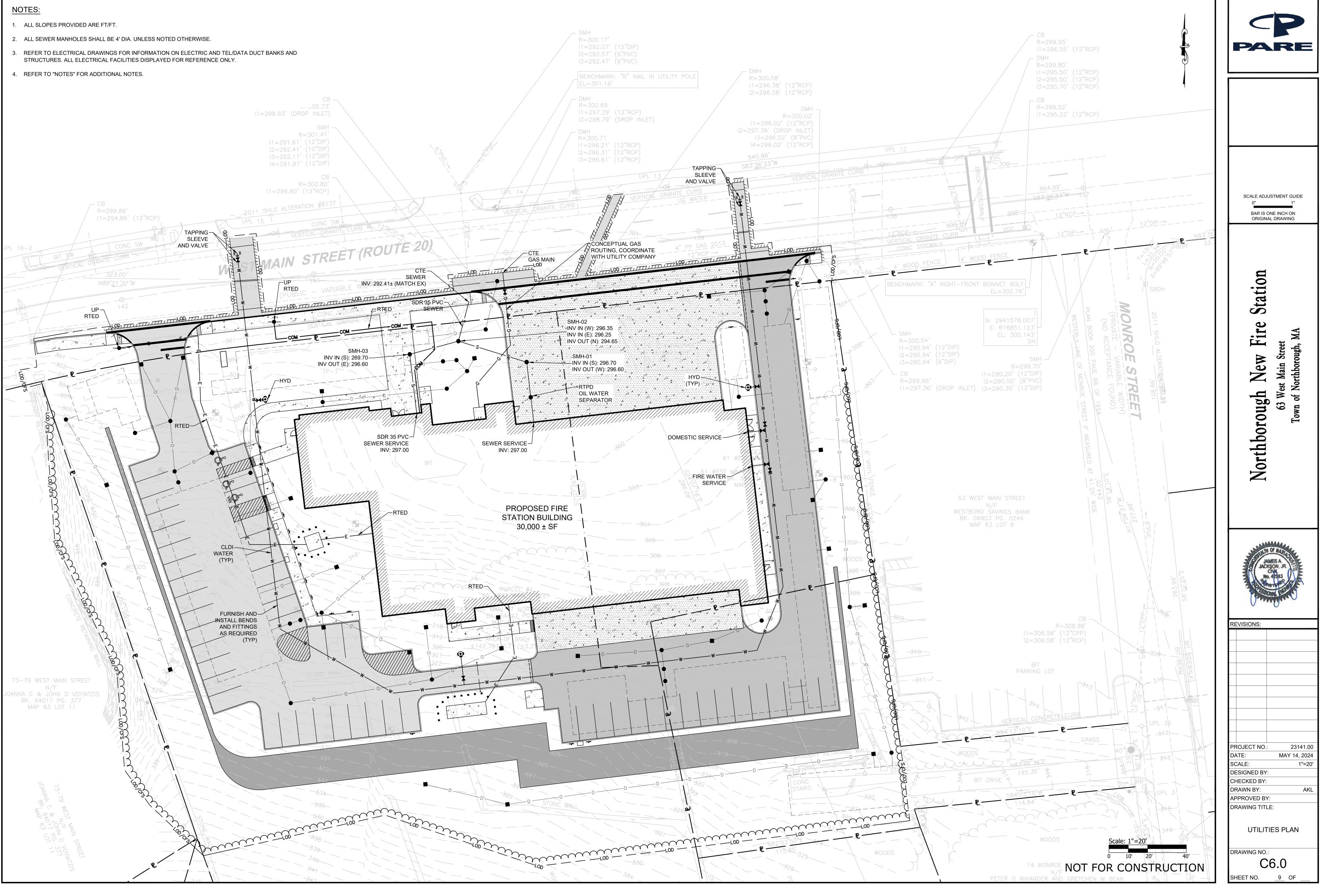
NOT FOR CONSTRUCTION

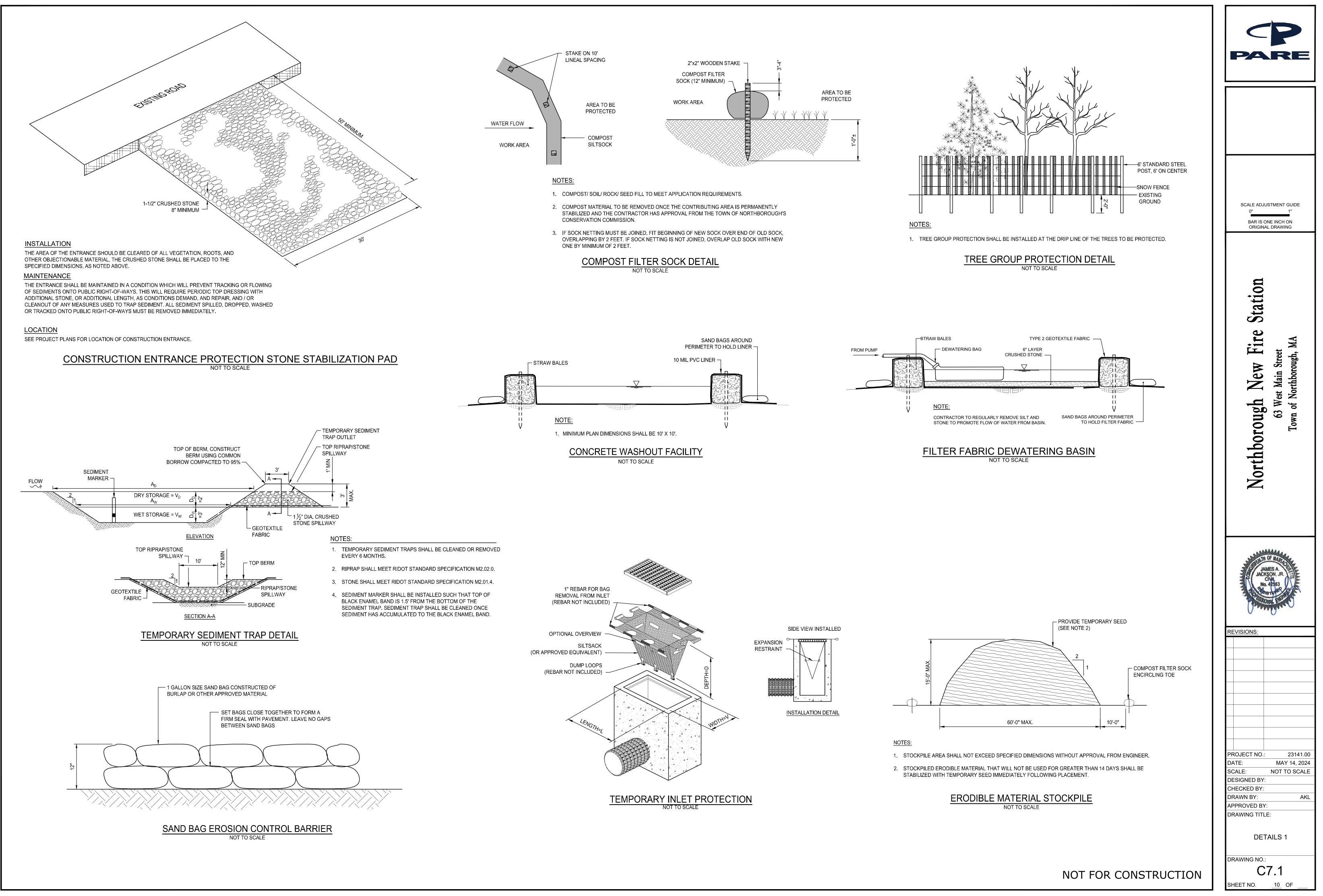
Fire MA New $\overline{\boldsymbol{\mathcal{S}}}$ Northbor Main est rthborough of M 63 M L^o Nor

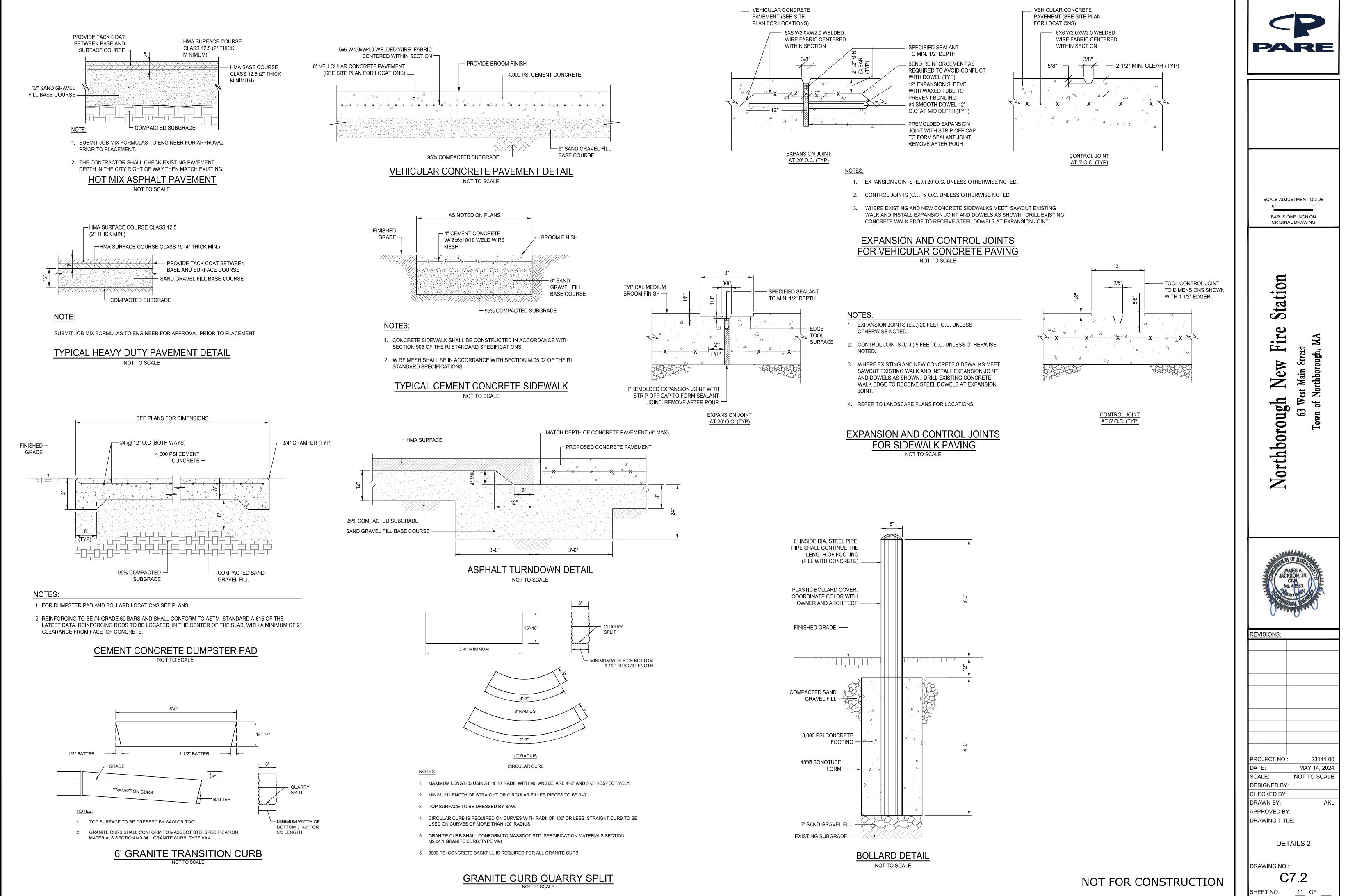
ough,

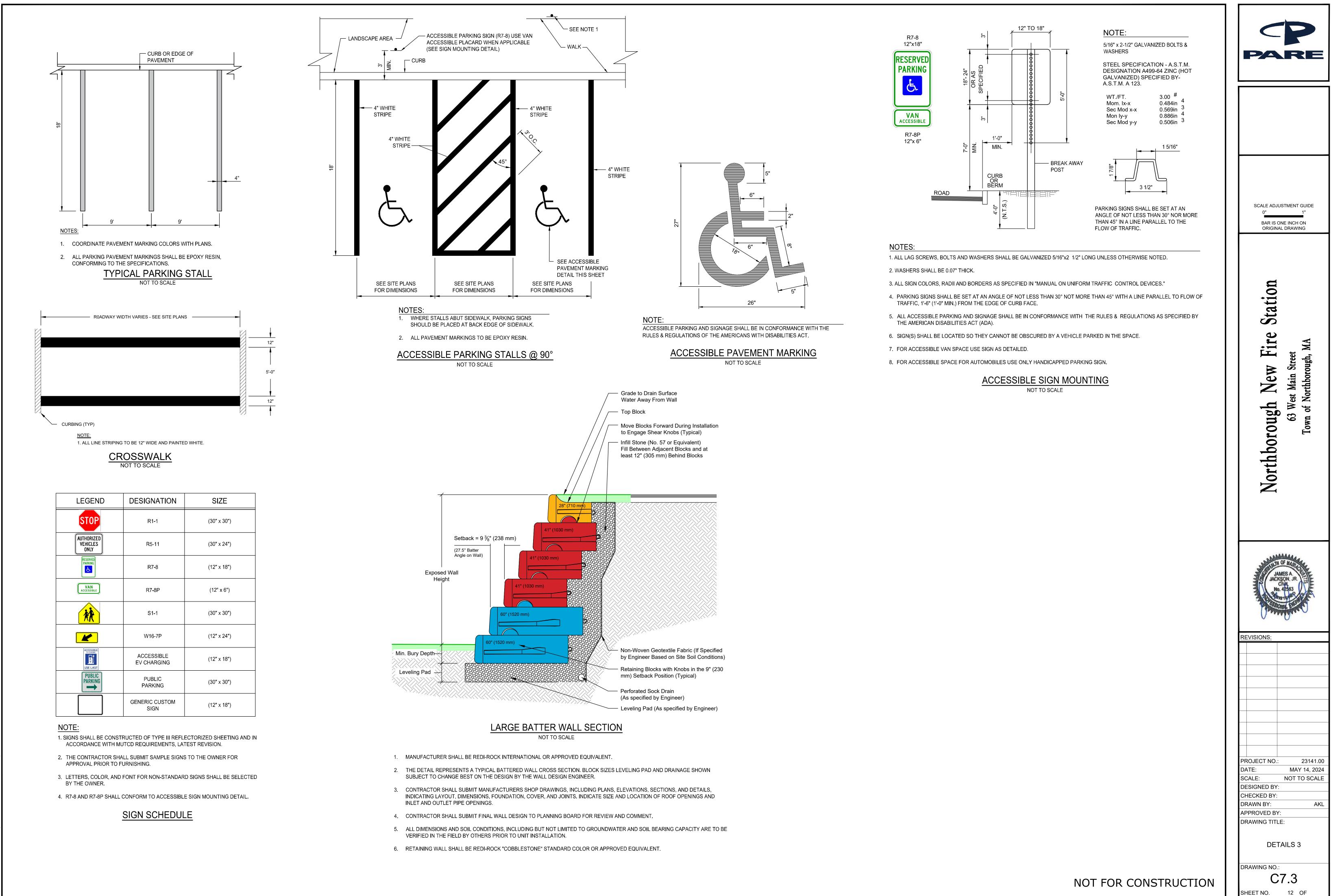

Station

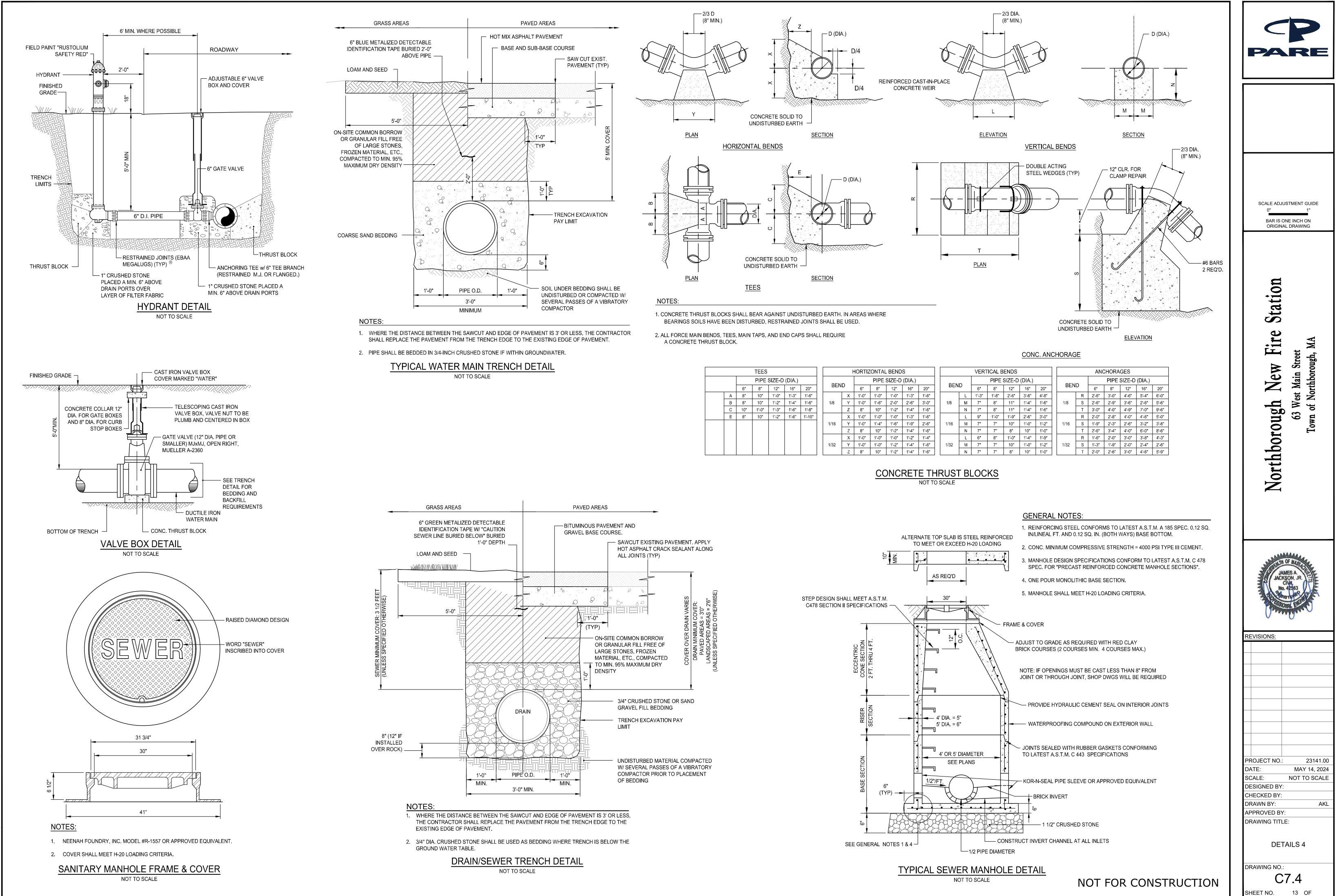
PARE

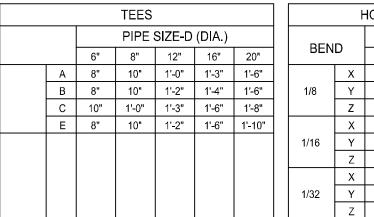

SCALE ADJUSTMENT GUIDE

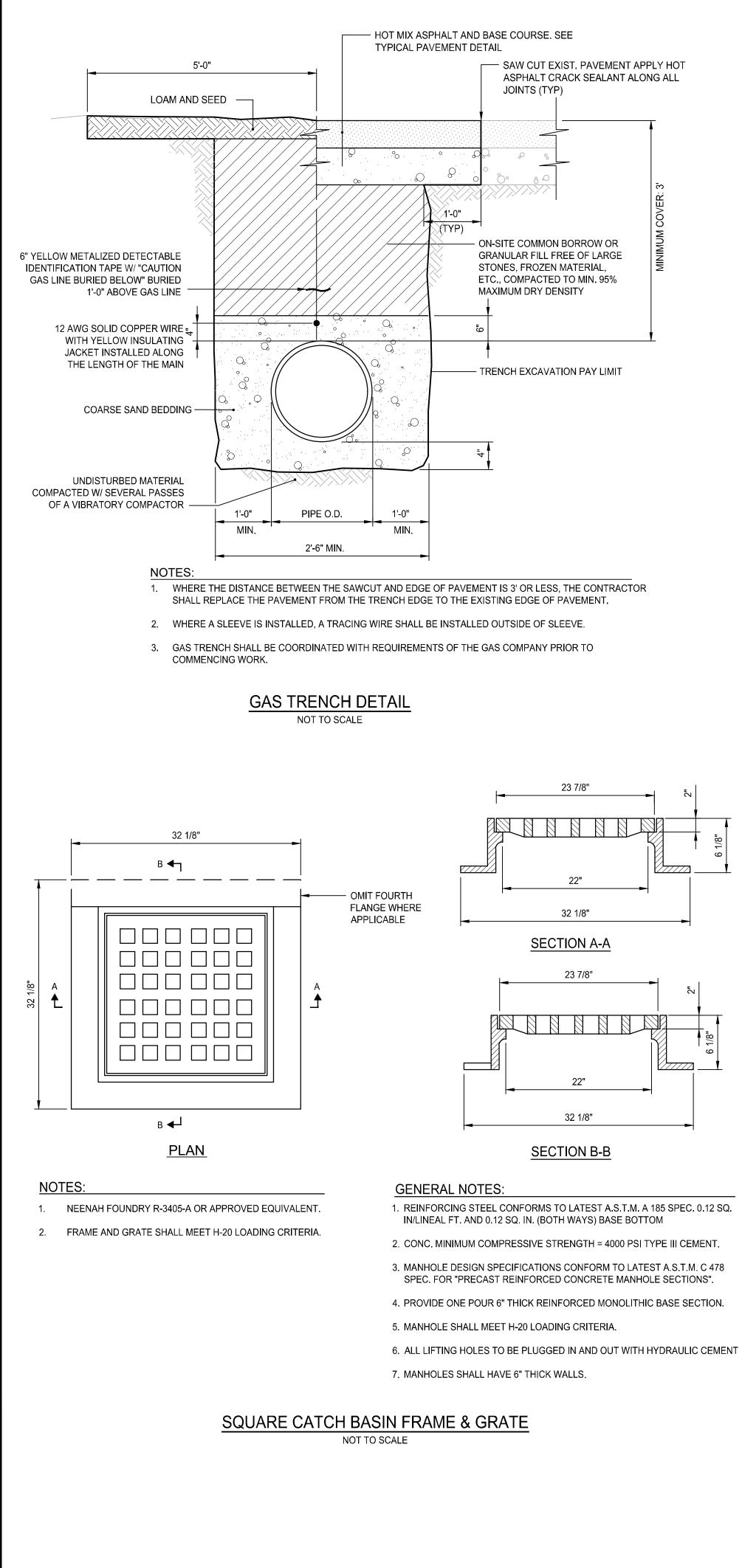

BAR IS ONE INCH ON

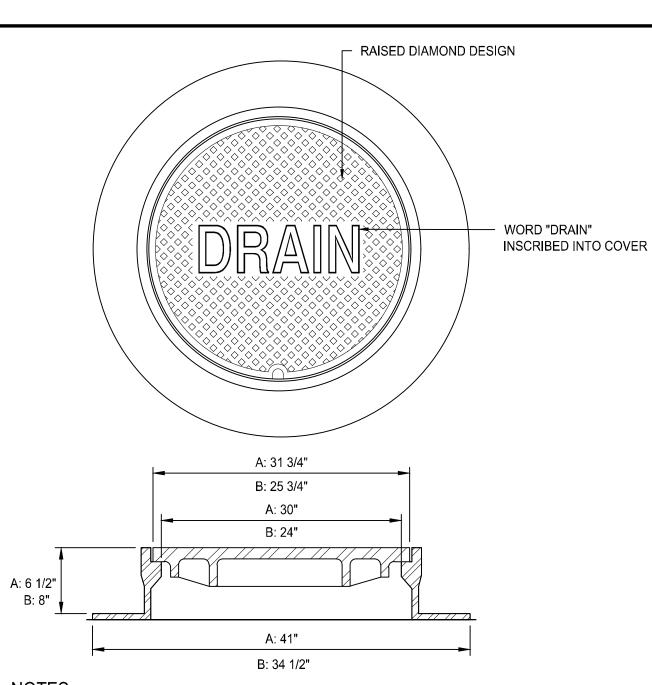

ORIGINAL DRAWING









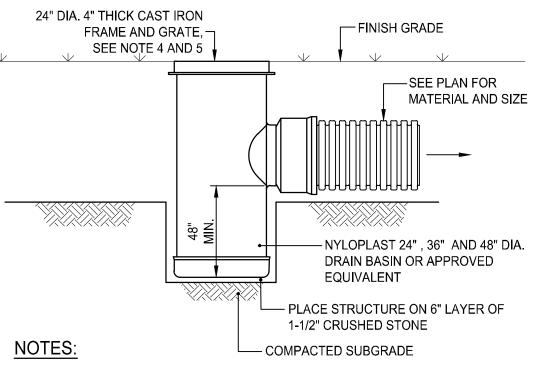


HORTIZONTAL BENDS								
	BEND		PIPE SIZE-D (DIA.)					
			6"	8"	12"	16"	20	
		Х	1'-0"	1'-0"	1'-0"	1'-3"	1-	
	1/8	Y	1'-0"	1'-6"	2'-0"	2'-6"	3'-	
		Ζ	8"	10"	1'-2"	1'-4"	1'-	
		Х	1'-0"	1'-0"	1'-0"	1'-3"	1-	
	1/16	Y	1'-0"	1'-4"	1'-6"	1'-9"	2'-	
-		Ζ	8"	10"	1'-2"	1'-4"	1'-	
		Х	1'-0"	1'-0"	1'-0"	1'-2"	1'-	
	1/32	Y	1'-0"	1'-0"	1'-2"	1'-4"	1'-	
		7	8"	10"	1'-2"	1'-4"	1'-	

ANTI-SIPHON DEVICE OUTLET STOP OUTLET HOOD \triangleleft

OUTLET HOOD DETAIL NOT TO SCALE

1. ALL FRAMES AND COVERS SHALL MEET H-20 LOADING CRITERIA.

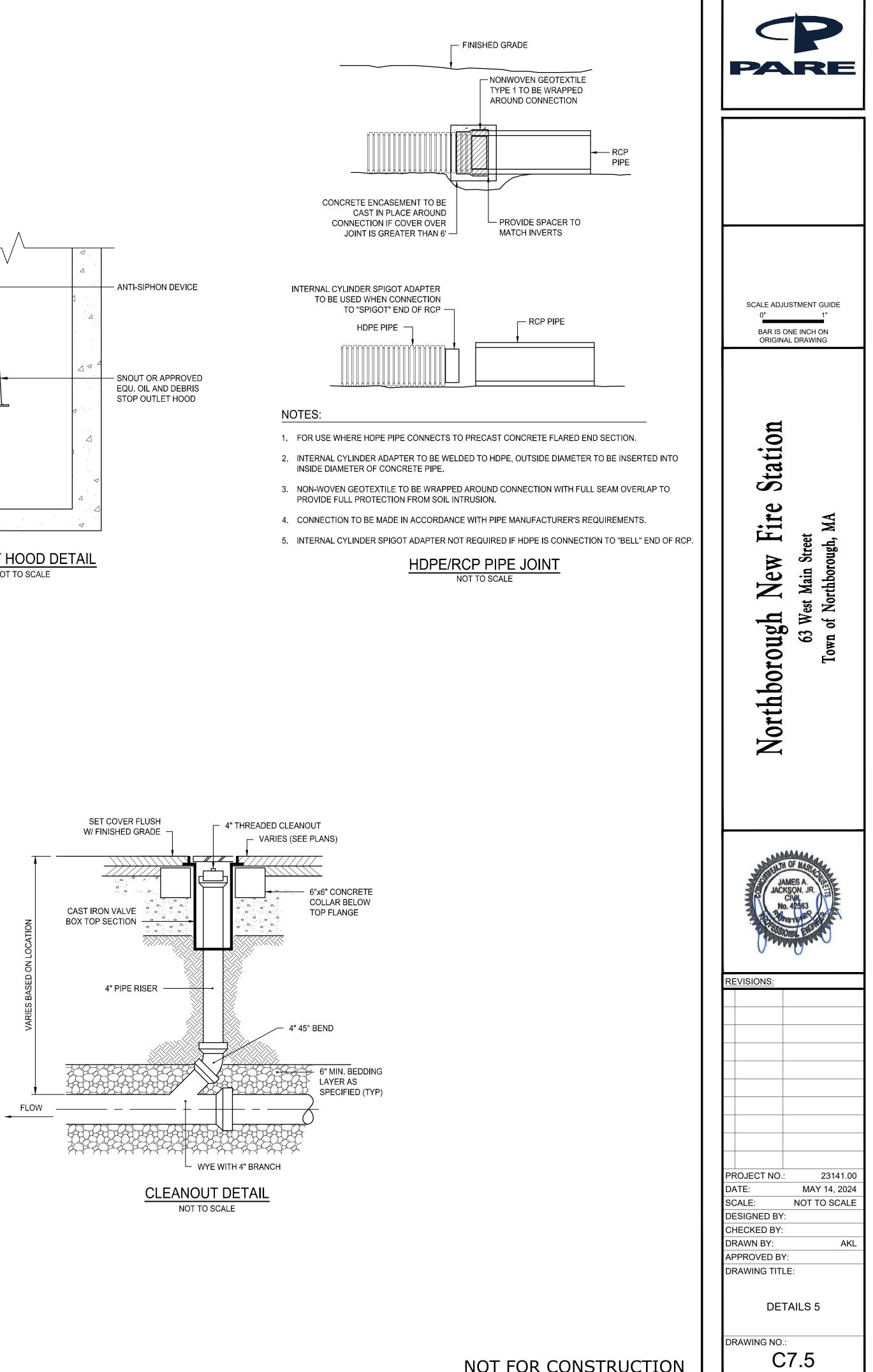

2. PROVIDE:

A: 30" DIA. DRAIN MANHOLE FRAME AND COVER SHALL BE NEENAH FOUNDRY, INC. MODEL #R-1557 OR APPROVED EQUIVALENT. B: 24" DIA. DRAIN MANHOLE FRAME AND COVER SHALL BE

NEENAH FOUNDRY, INC. MODEL #R-1556 OR APPROVED EQUIVALENT.

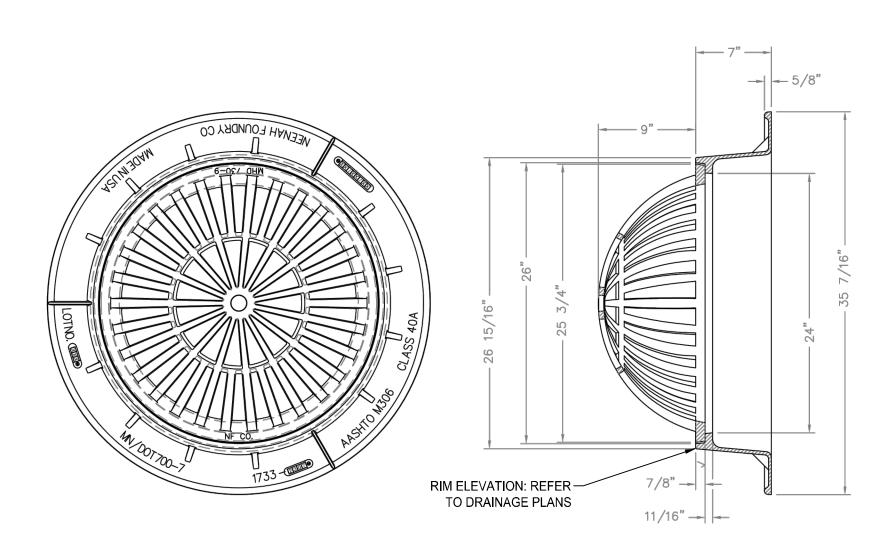
3. ALL DRAIN MANHOLES SHALL HAVE 24" DIA. DRAIN MANHOLE COVER UNLESS NOTED OTHERWISE.

DRAIN MANHOLE FRAME & COVER NOT TO SCALE



1. DRAIN BASIN SHALL BE CUSTOM MANUFACTURED FOR THE PROJECT WITH THE INLETS AND OUTLETS REQUIRED.

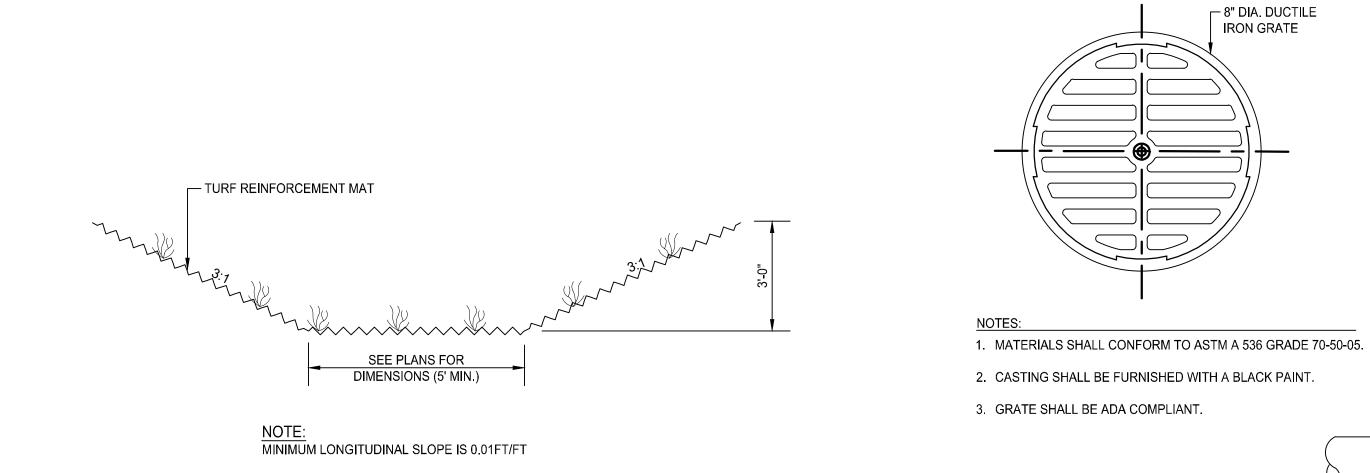
2. STRUCTURES SHALL BE CONSTRUCTED TO WITHSTAND LOADS IMPOSED BY CONSTRUCTION VEHICLES.


- 3. DRAIN BASIN SHALL BE CONSTRUCTED OF HIGH DENSITY POLYETHYLENE.
- 4. FRAME AND GRATE SHALL BE CONSTRUCTED OF DUCTILE IRON AND CONFORM TO ASTM A536 GRADE 70-50-05, UNLESS OTHERWISE SPECIFIED. PROVIDE NYLOPLAST 2499CGS OR APPROVED EQUIVALENT.
- 5. PROVIDE DOME GRATE AT AD-XX, AD-XX, AND AD-XX. PROVIDE NYLOPLAST 2499CGD OR APPROVED EQUIVALENT.
- 6. PROVIDE PEDESTRIAN GRATE AT AD-XX, AD-XX AND AD-XX. PROVIDE NYLOPLAST 2499CGP OR APPROVED EQUIVALENT. FRAME AND GRATE SHALL BE ADA COMPLIANT.

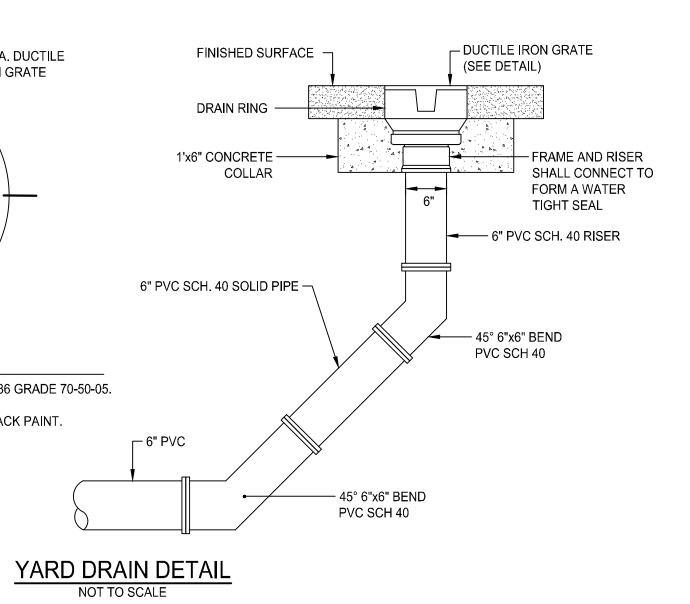
AREA DRAIN DETAIL NOT TO SCALE

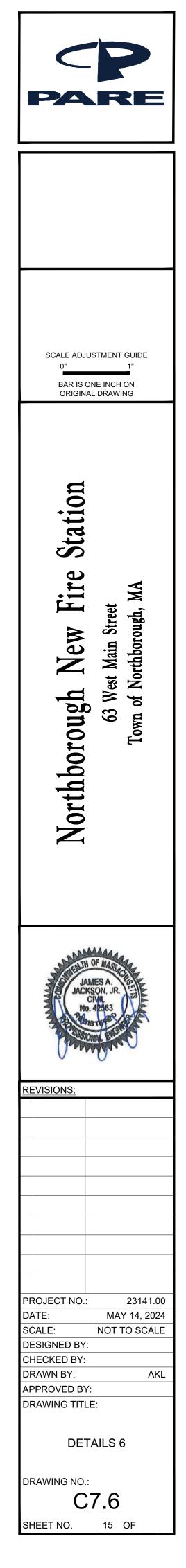
NOT FOR CO	ONSTRUCTIO
------------	------------

SHEET NO. 14 OF

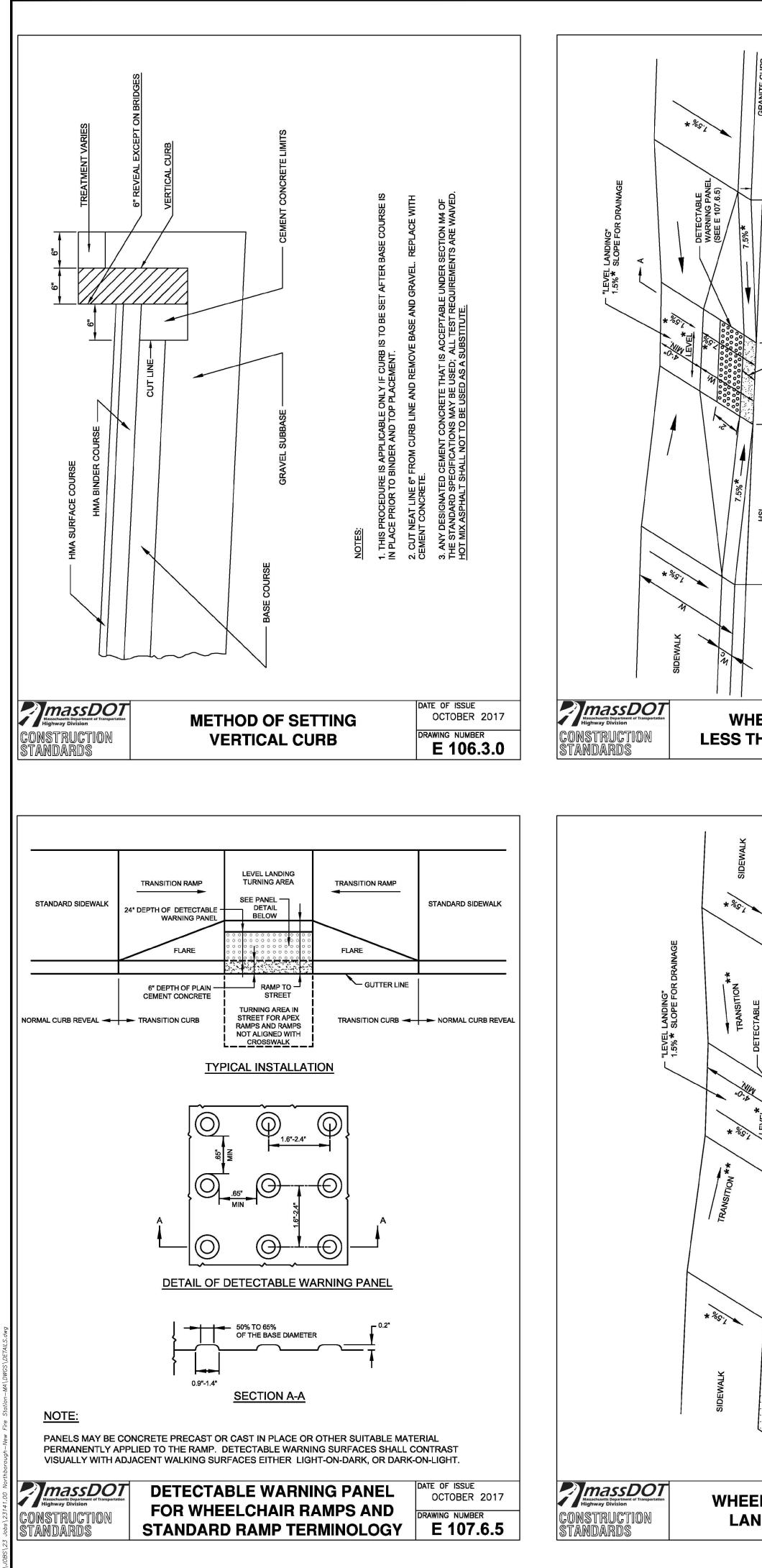


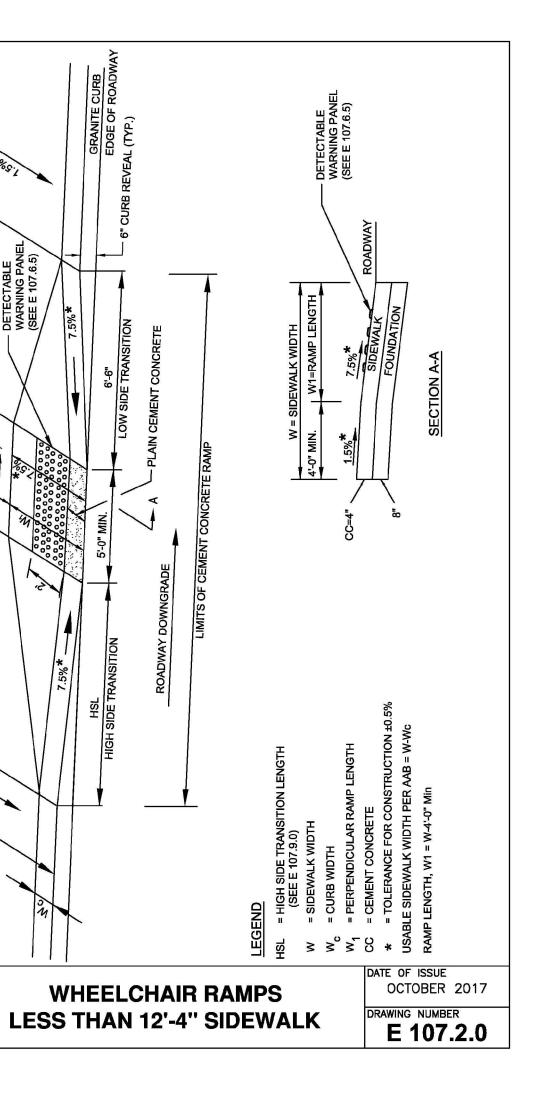
NOTES:

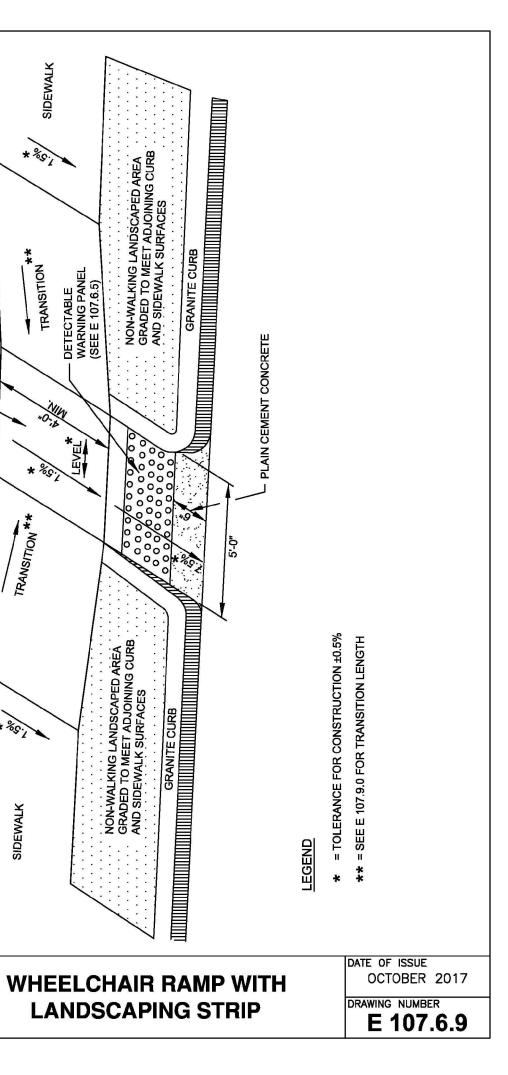

1. NEENA FOUNDRY R2561 OR APPROVED EQUIVALENT.

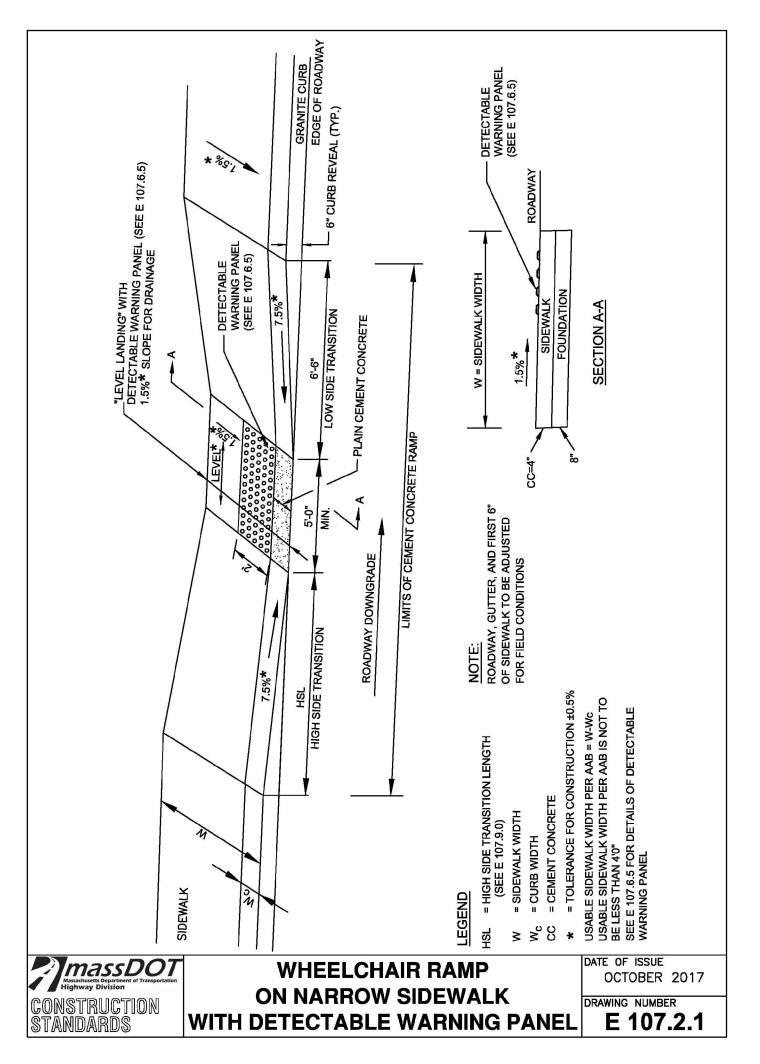

- 2. FRAME AND GRATE SHALL MEET H-20 LOADING CRITERIA.
- 3. ALL LIFTING HOLES TO BE PLUGGED IN AND OUT WITH HYDRAULIC CEMENT.
- 4. MANHOLES SHALL HAVE 6" THICK WALLS.
- 5. PROVIDE DOME GRATE AT THE FOLLOWING CATCH BASINS: CB-XX, CB-XX, AND CB-XX.

DOME GRATE DETAIL



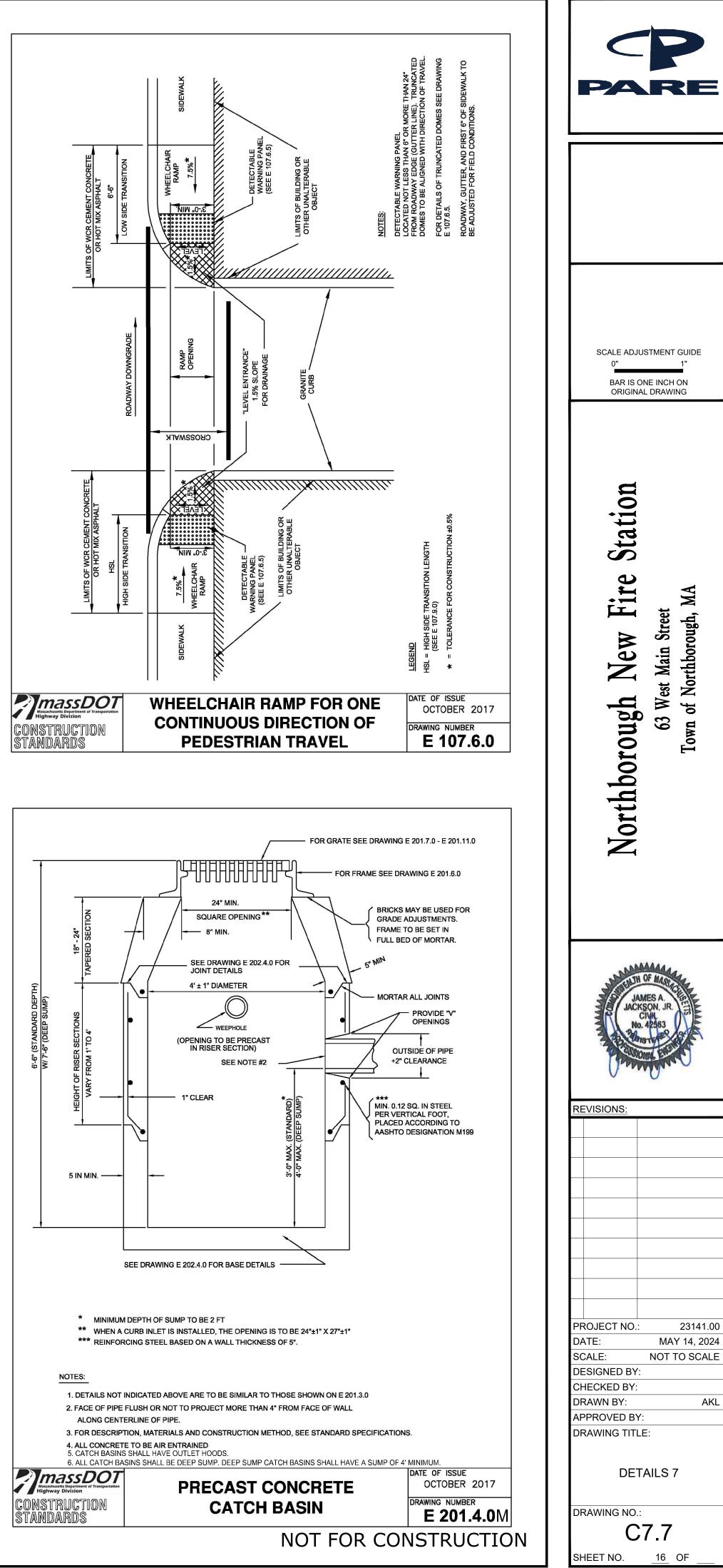

GRASS SWALE SECTION

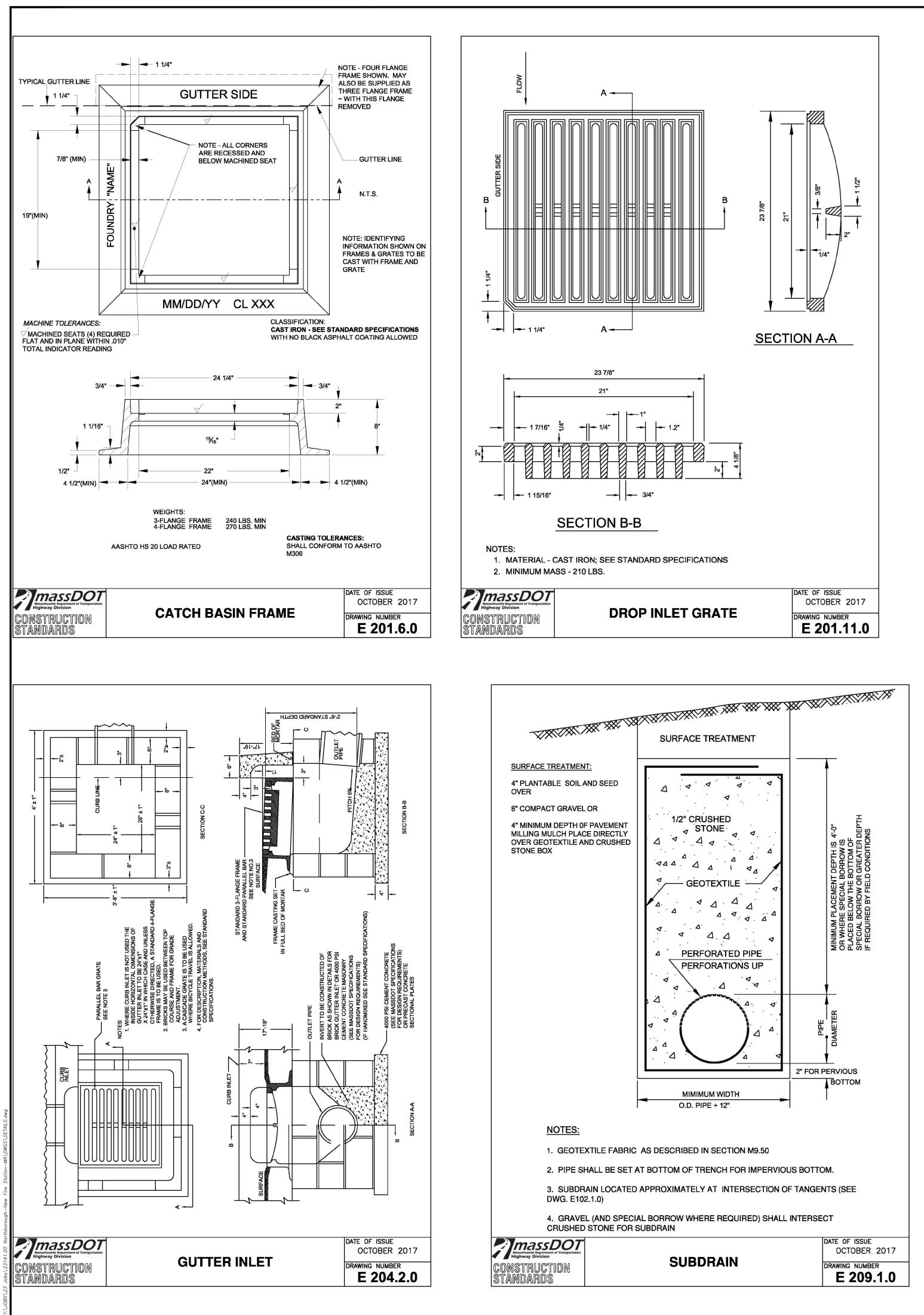




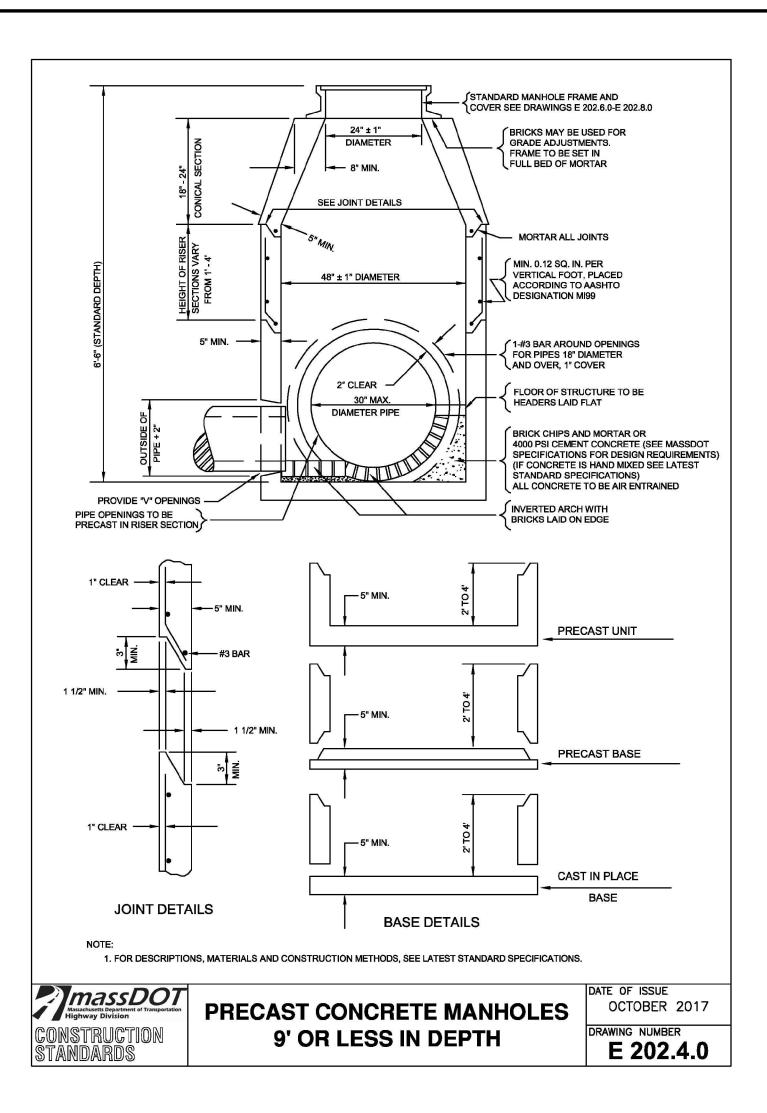
NOT FOR CONSTRUCTION

* HIGH SIDE TRANSITION LENGTH	ENGLISH UNITS	6'-6"	7'-8"	9'-0"	11'-0"	14'-0"	15'-0" Max		ESIGN SLOPE OF	VEAL UF 0.
ROADWAY PROFILE GRADE	%	%0=	>0% TO 1%	>1% TO 2%	>2% TO 3%	>3% TO 4%	>4% TO 5%	NOTE:	* BASED ON A DESIGN SLOPE OF	1.3% AIND A REVEAL UF 0.

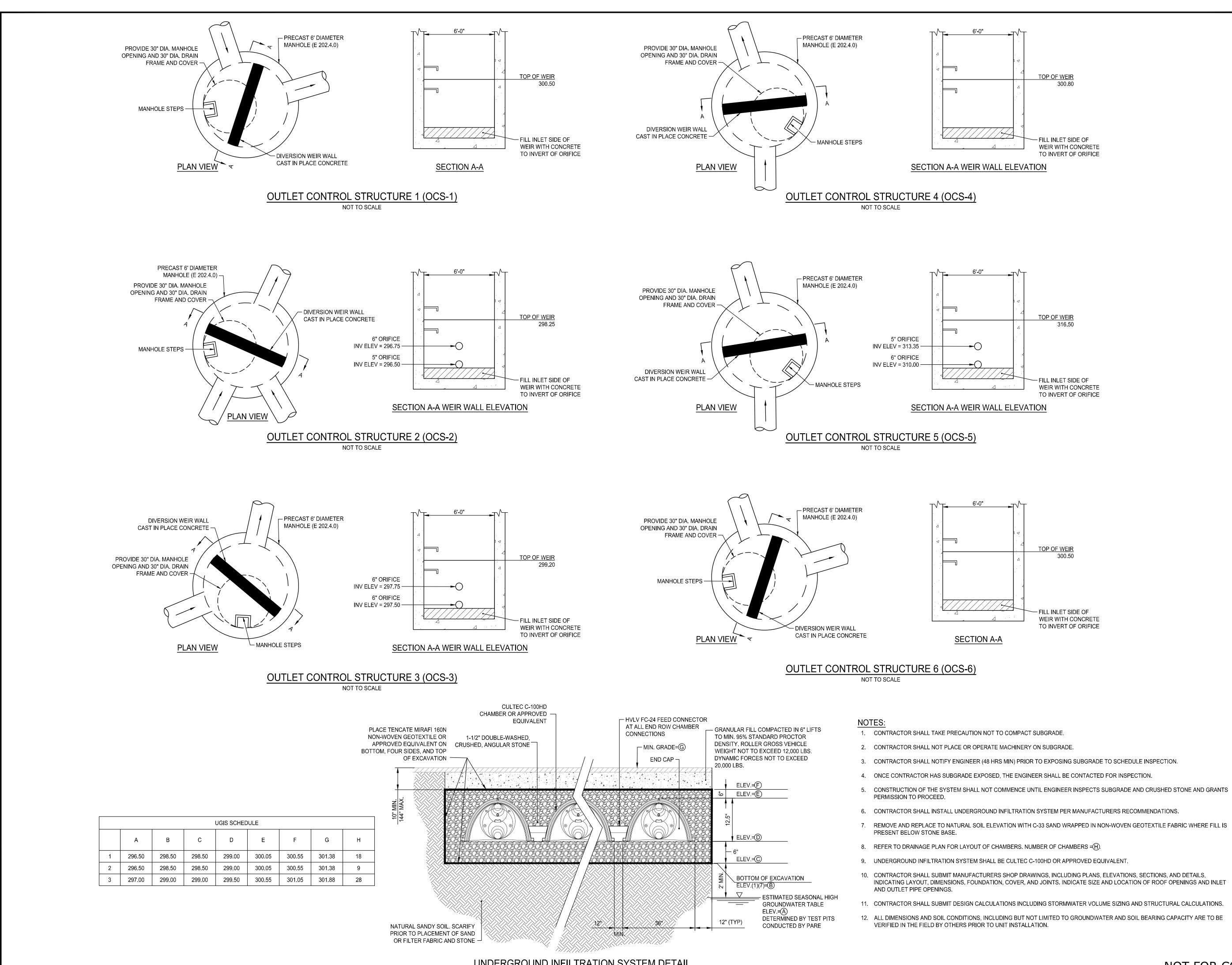

Massachusetts Department of Transportation Highway Division


CONSTRUCTION STANDARDS

CURB TRANSITION LENGTH FOR WHEELCHAIR RAMPS


OCTOBER 2017 DRAWING NUMBER E 107.9.0

DATE OF ISSUE

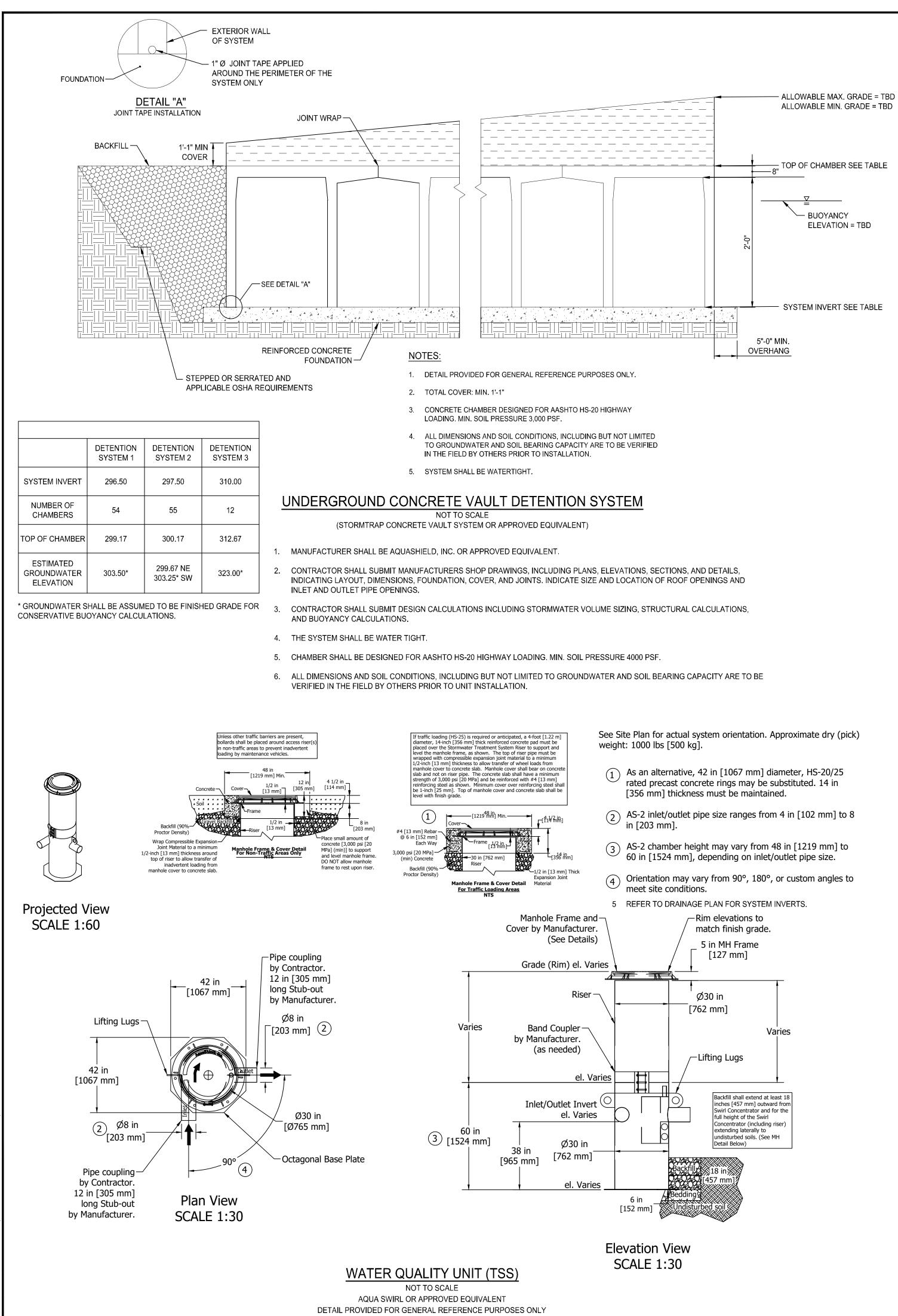


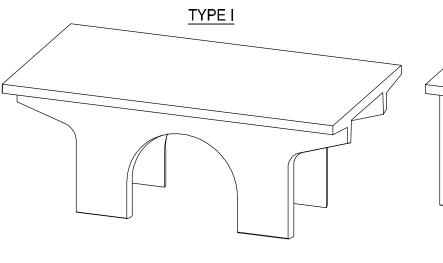
	= = = = = = = = = = = = = = = = = = = =
SUBDRAIN	DRAWING NUMBER
CLIBDDAIN	
	OCTOBER 2017
	DATE OF ISSUE
BDRAIN	

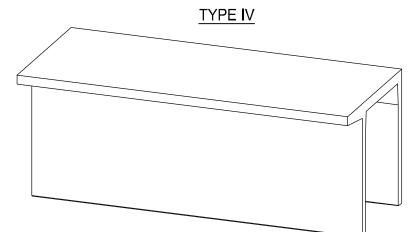
PARE
SCALE ADJUSTMENT GUIDE 0" 1" BAR IS ONE INCH ON ORIGINAL DRAWING
Northborough New Fire Station 63 West Main Street Town of Northborough, MA
JAMES A. JACKSON, JR. CIVIL No. 42563
PROJECT NO.: 23141.00 DATE: MAY 14, 2024 SCALE: NOT TO SCALE DESIGNED BY: CHECKED BY: DRAWN BY: AKL APPROVED BY: DRAWING TITLE: DETAILS 8
DRAWING NO.: C7.8 SHEET NO. <u>17</u> OF

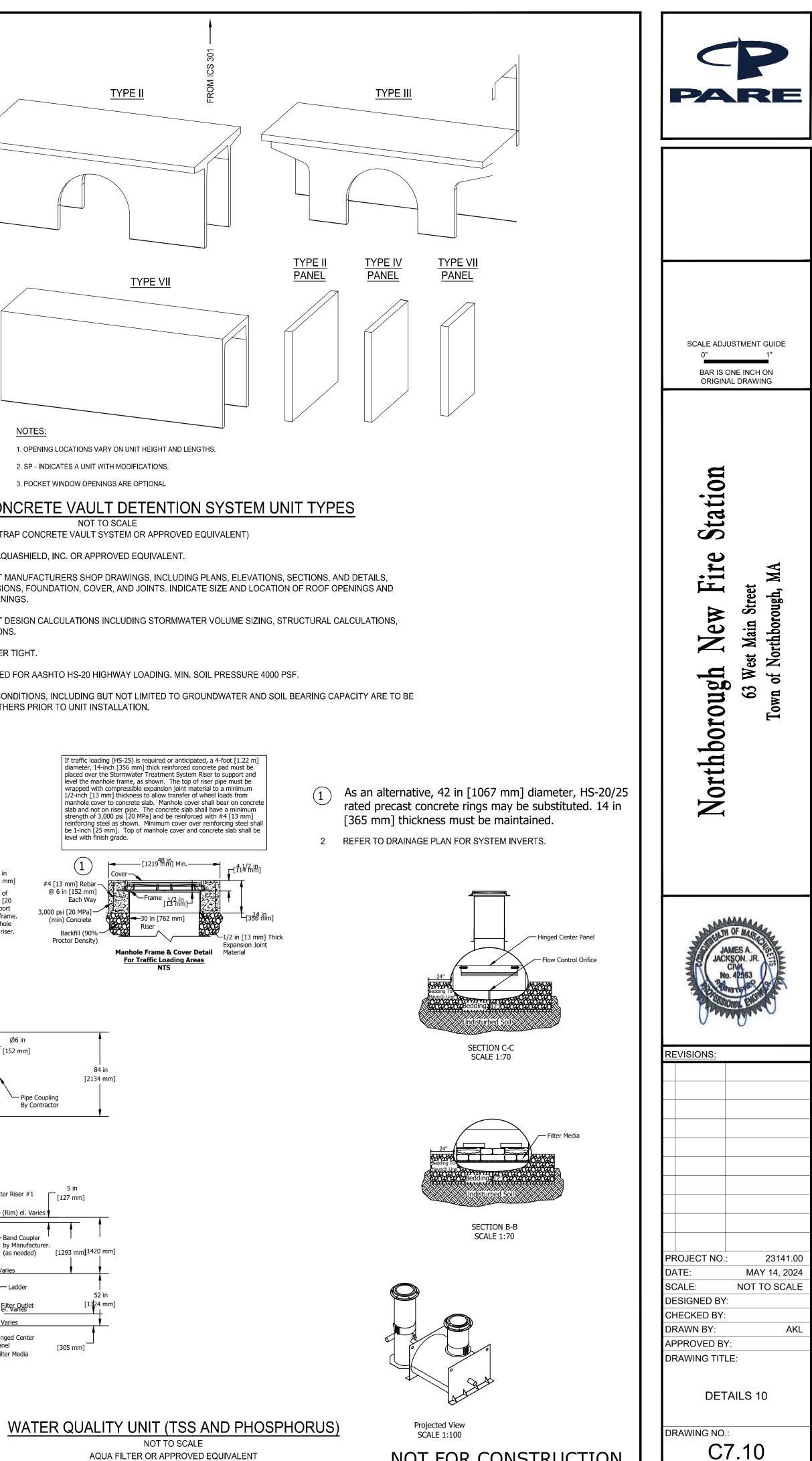
NOT FOR CONSTRUCTION

UNDERGROUND INFILTRATION SYSTEM DETAIL

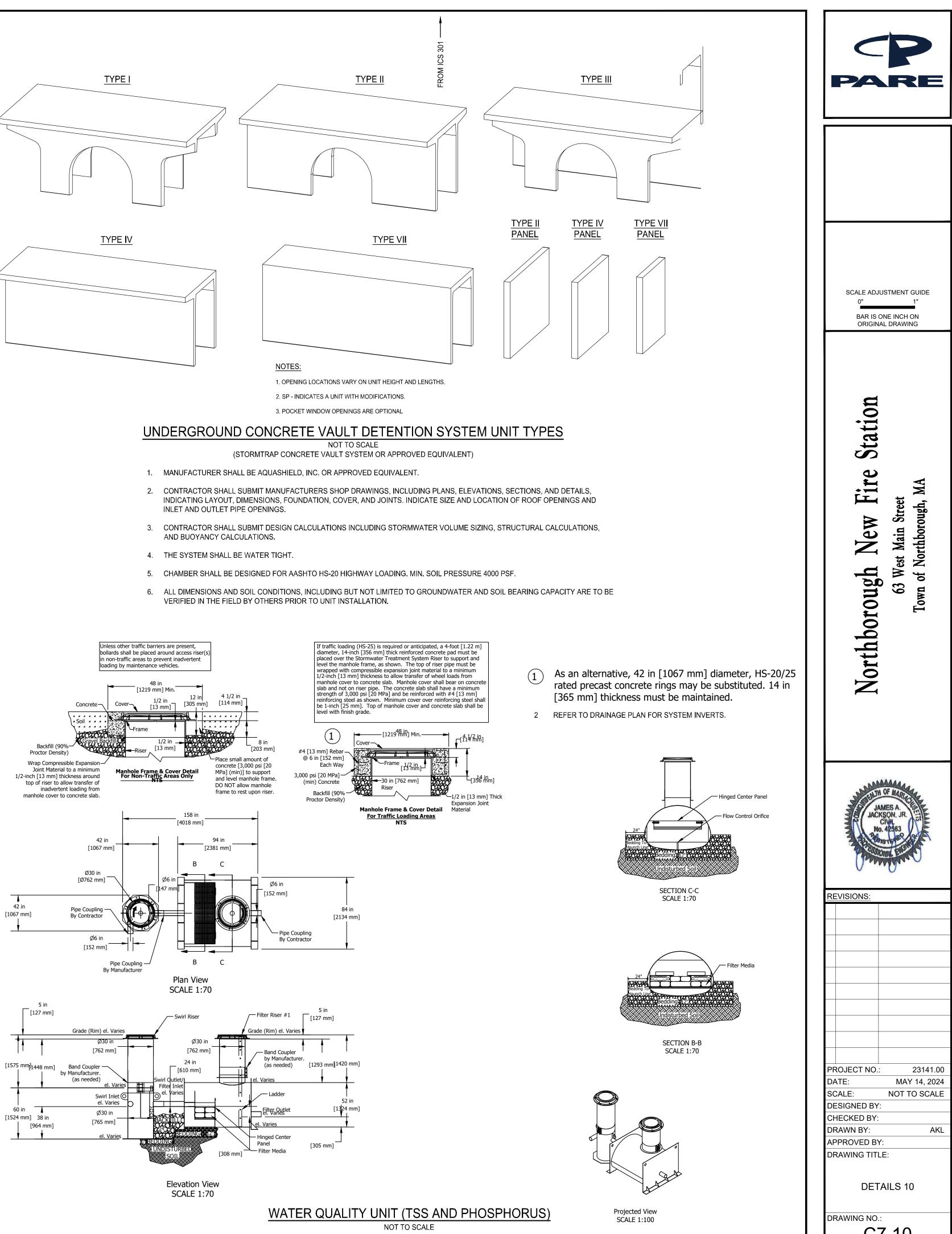

NOT TO SCALE

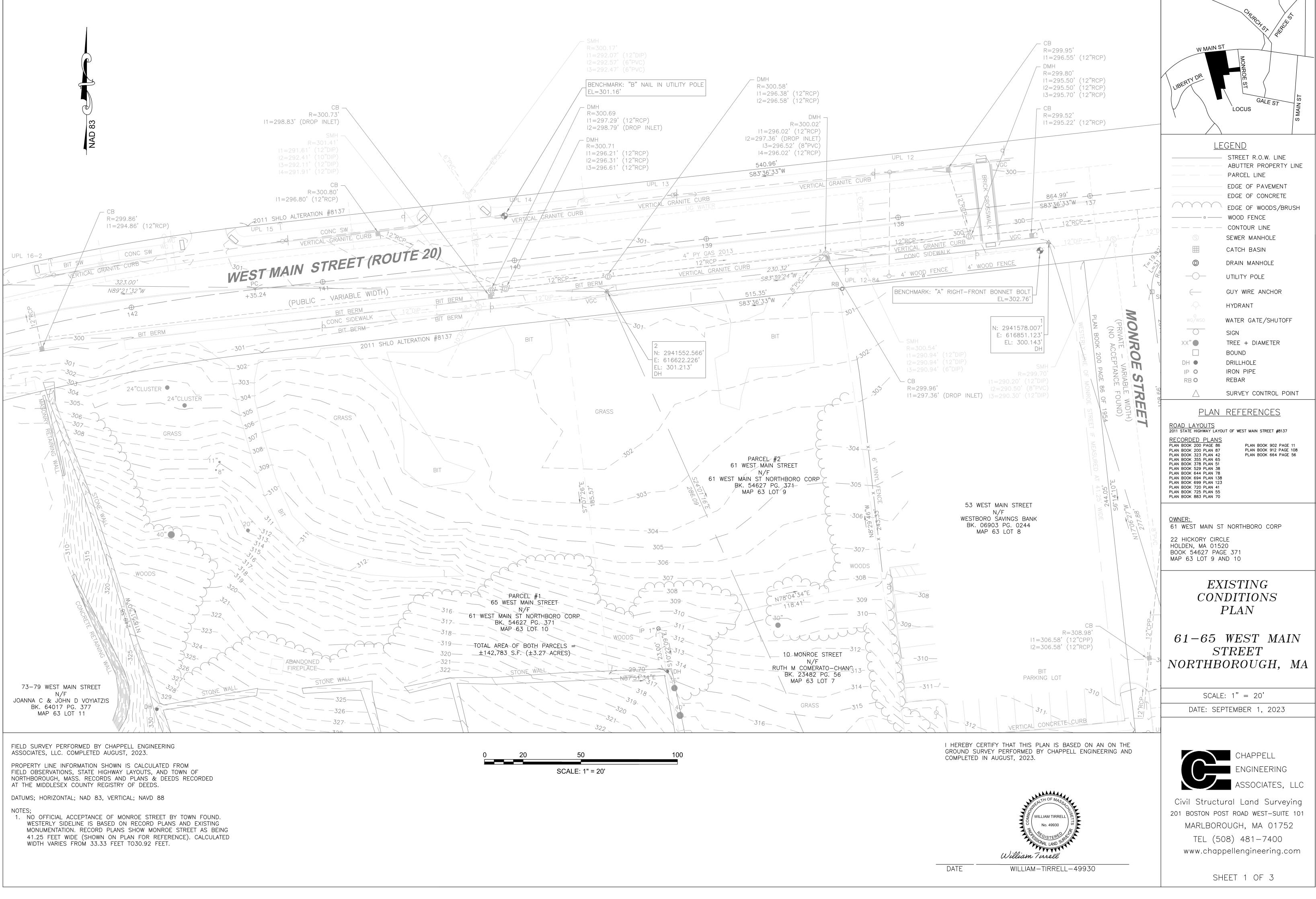

NOT FOR CONSTRUCTION

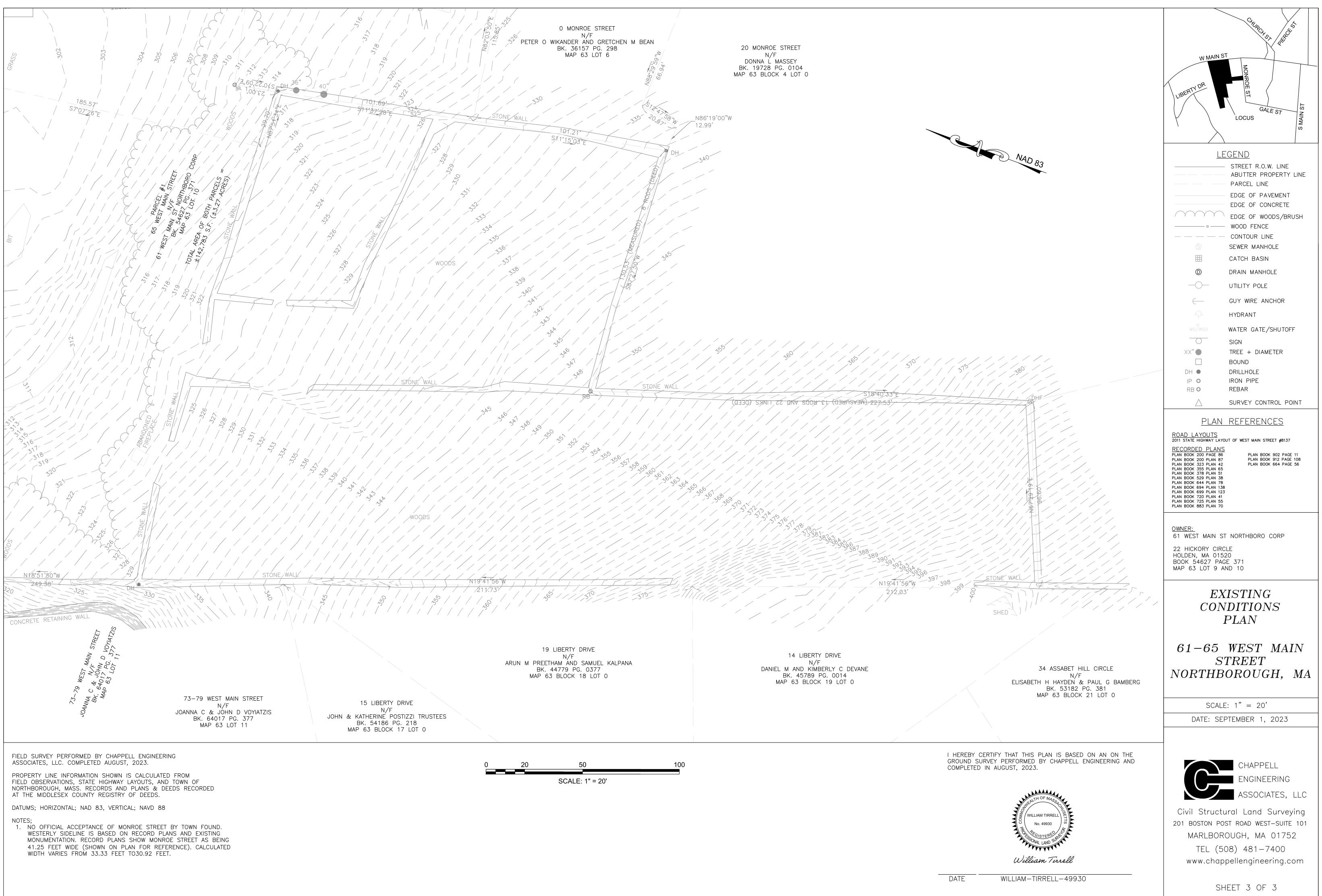

Fire New rthborough Noi **REVISIONS**:


PARE SCALE ADJUSTMENT GUIDE BAR IS ONE INCH ON ORIGINAL DRAWING Station MA ough, Northbor Main est of M 63 PROJECT NO .: 23141.00 DATE MAY 14, 2024 SCALE: NOT TO SCALE DESIGNED BY: CHECKED BY: DRAWN BY: AKL APPROVED BY: DRAWING TITLE: DETAILS 9 DRAWING NO .: C7.9

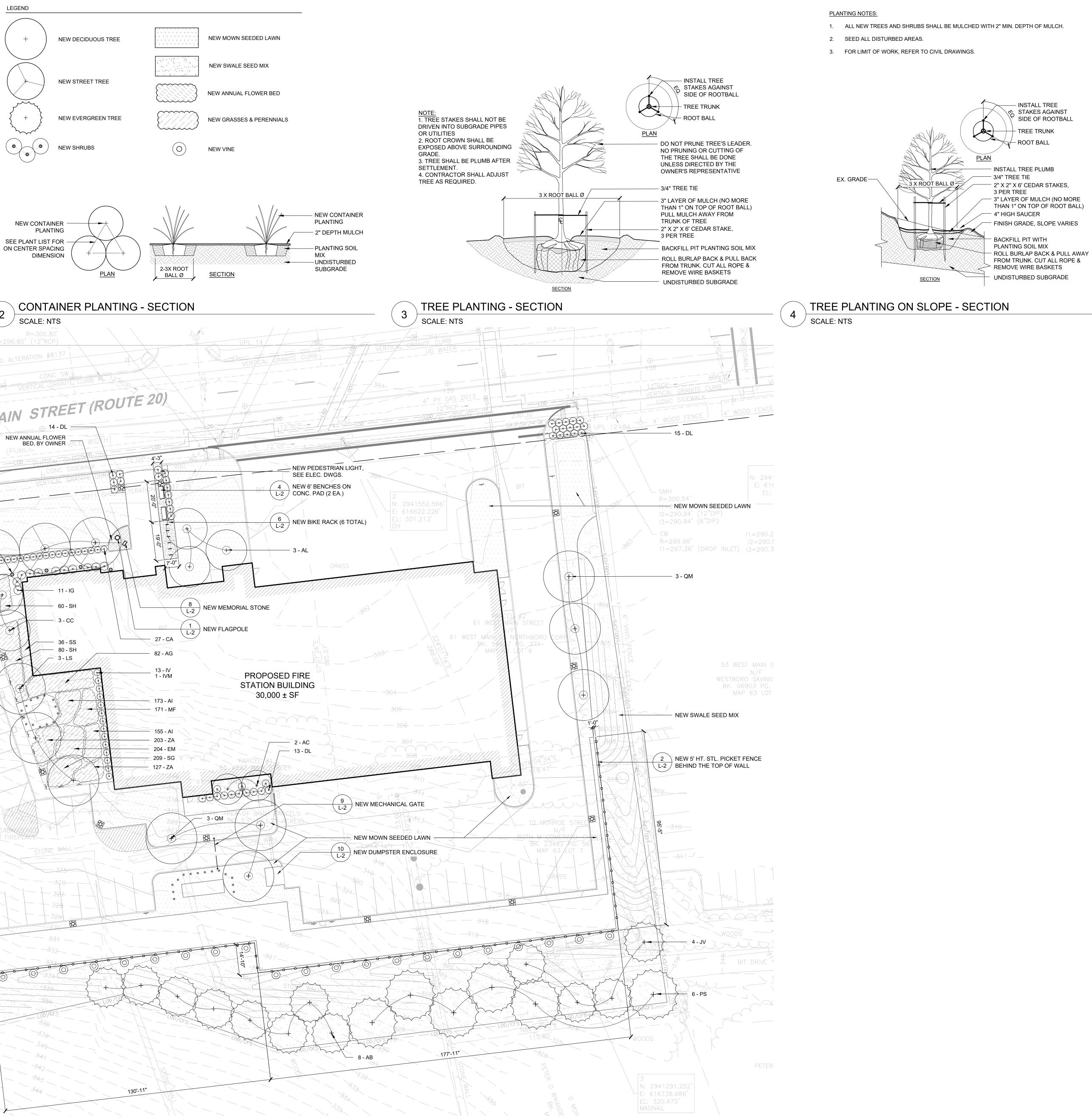
SHEET NO. 18 OF

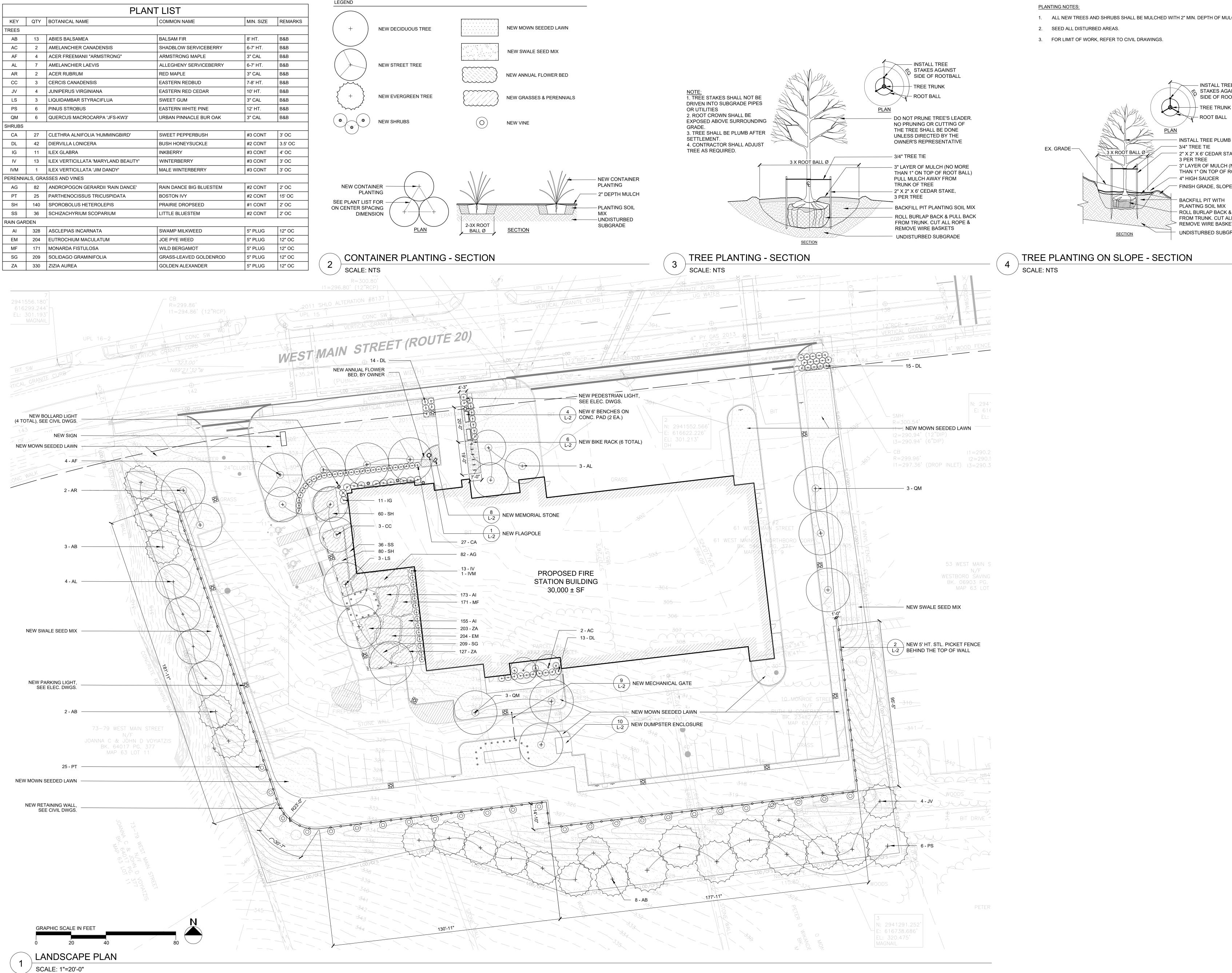


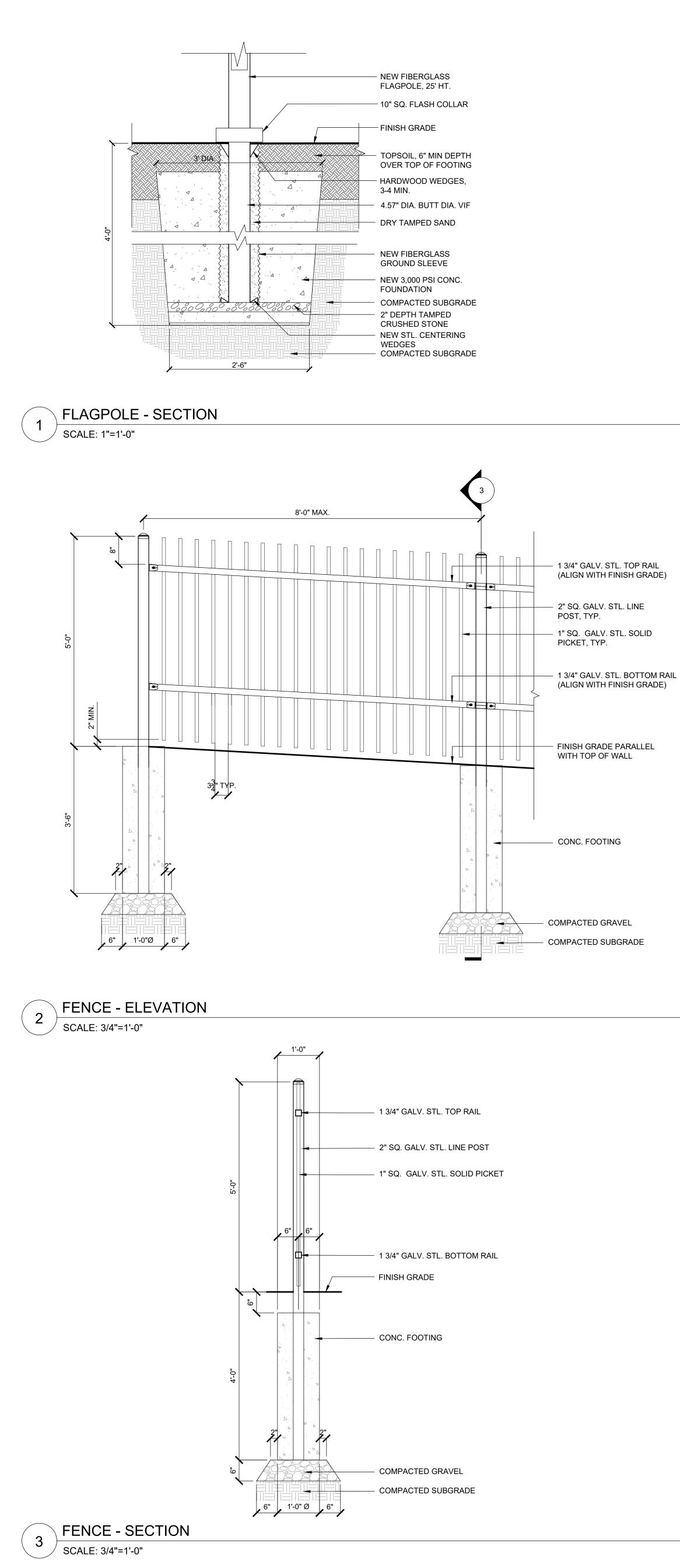

- INLET AND OUTLET PIPE OPENINGS.
- AND BUOYANCY CALCULATIONS.

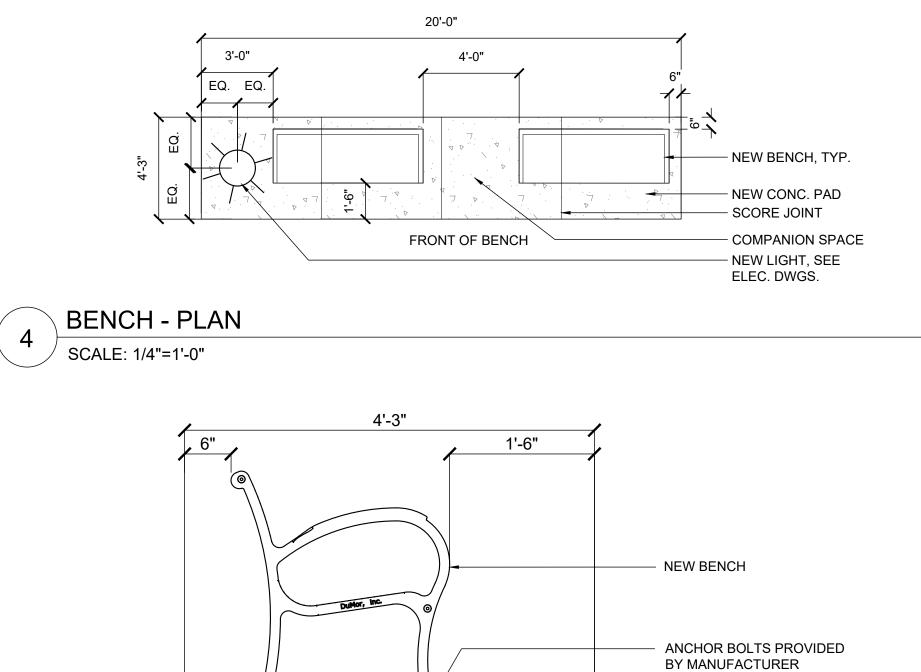

AQUA FILTER OR APPROVED EQUIVALENT DETAIL PROVIDED FOR GENERAL REFERENCE PURPOSES ONLY NOT FOR CONSTRUCTION

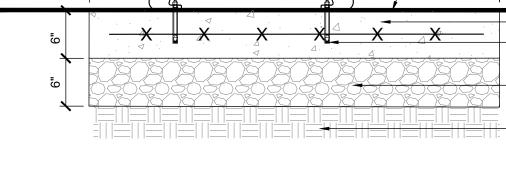
SHEET NO.

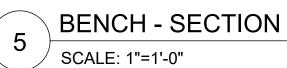

19 OF

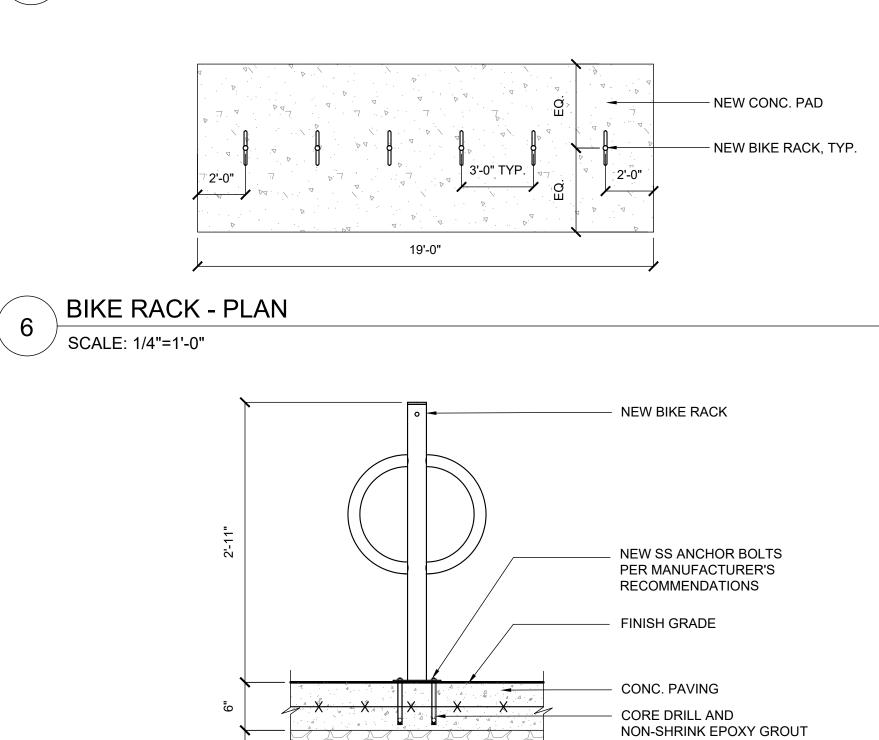



		PLAN	NT LIST		
KEY	QTY	BOTANICAL NAME	COMMON NAME	MIN. SIZE	REMARKS
TREES	1		•		•
AB	13	ABIES BALSAMEA	BALSAM FIR	8' HT.	B&B
AC	2	AMELANCHIER CANADENSIS	SHADBLOW SERVICEBERRY	6-7' HT.	B&B
AF	4	ACER FREEMANII "ARMSTRONG"	ARMSTRONG MAPLE	3" CAL	B&B
AL	7	AMELANCHIER LAEVIS	ALLEGHENY SERVICEBERRY	6-7' HT.	B&B
AR	2	ACER RUBRUM	RED MAPLE	3" CAL	B&B
CC	3	CERCIS CANADENSIS	EASTERN REDBUD	7-8' HT.	B&B
JV	4	JUNIPERUS VIRGINIANA	EASTERN RED CEDAR	10' HT.	B&B
LS	3	LIQUIDAMBAR STYRACIFLUA	SWEET GUM	3" CAL	B&B
PS	6	PINUS STROBUS	EASTERN WHITE PINE	12' HT.	B&B
QM	6	QUERCUS MACROCARPA 'JFS-KW3'	URBAN PINNACLE BUR OAK	3" CAL	B&B
SHRUBS			· ·	·	
CA	27	CLETHRA ALNIFOLIA 'HUMMINGBIRD'	SWEET PEPPERBUSH	#3 CONT	3' OC
DL	42	DIERVILLA LONICERA	BUSH HONEYSUCKLE	#2 CONT	3.5' OC
IG	11	ILEX GLABRA	INKBERRY	#3 CONT	4' OC
IV	13	ILEX VERTICILLATA 'MARYLAND BEAUTY'	WINTERBERRY	#3 CONT	3' OC
IVM	1	ILEX VERTICILLATA 'JIM DANDY'	MALE WINTERBERRY	#3 CONT	3' OC
PERENNI	ALS, GRA	ASSES AND VINES		·	
AG	82	ANDROPOGON GERARDII 'RAIN DANCE'	RAIN DANCE BIG BLUESTEM	#2 CONT	2' OC
PT	25	PARTHENOCISSUS TRICUSPIDATA	BOSTON IVY	#2 CONT	15' OC
SH	140	SPOROBOLUS HETEROLEPIS	PRAIRIE DROPSEED	#1 CONT	2' OC
SS	36	SCHIZACHYRIUM SCOPARIUM	LITTLE BLUESTEM	#2 CONT	2' OC
RAIN GAF	RDEN		·	·	•
AI	328	ASCLEPIAS INCARNATA	SWAMP MILKWEED	5" PLUG	12" OC
EM	204	EUTROCHIUM MACULATUM	JOE PYE WEED	5" PLUG	12" OC
MF	171	MONARDA FISTULOSA	WILD BERGAMOT	5" PLUG	12" OC
SG	209	SOLIDAGO GRAMINIFOLIA	GRASS-LEAVED GOLDENROD	5" PLUG	12" OC
ZA	330	ZIZIA AUREA	GOLDEN ALEXANDER	5" PLUG	12" OC



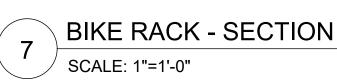



1. ALL NEW TREES AND SHRUBS SHALL BE MULCHED WITH 2" MIN. DEPTH OF MULCH.



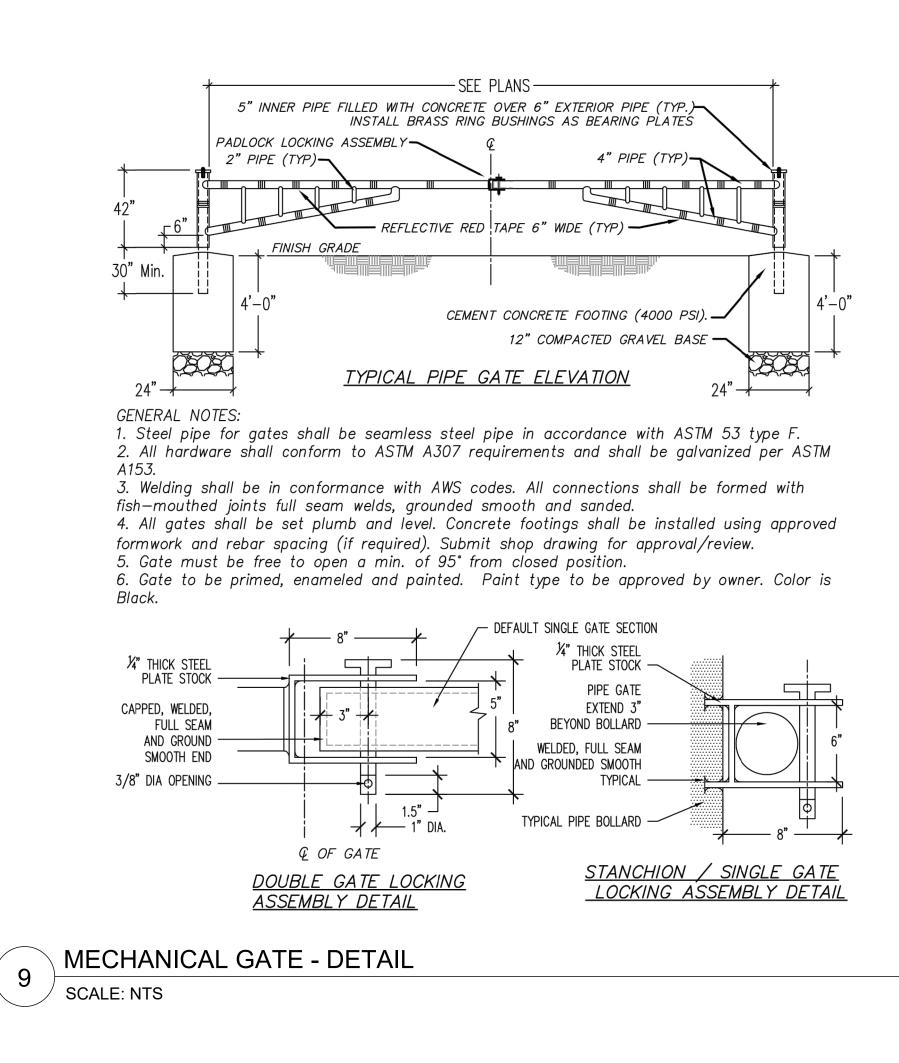
COMPACTED GRAVEL - COMPACTED SUBGRADE

- FINISH GRADE

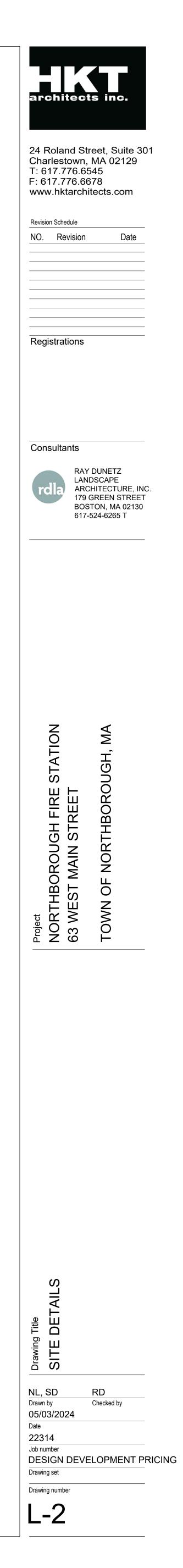

NEW CONCRETE PAD

COMPACTED GRAVEL

- COMPACTED SUBGRADE

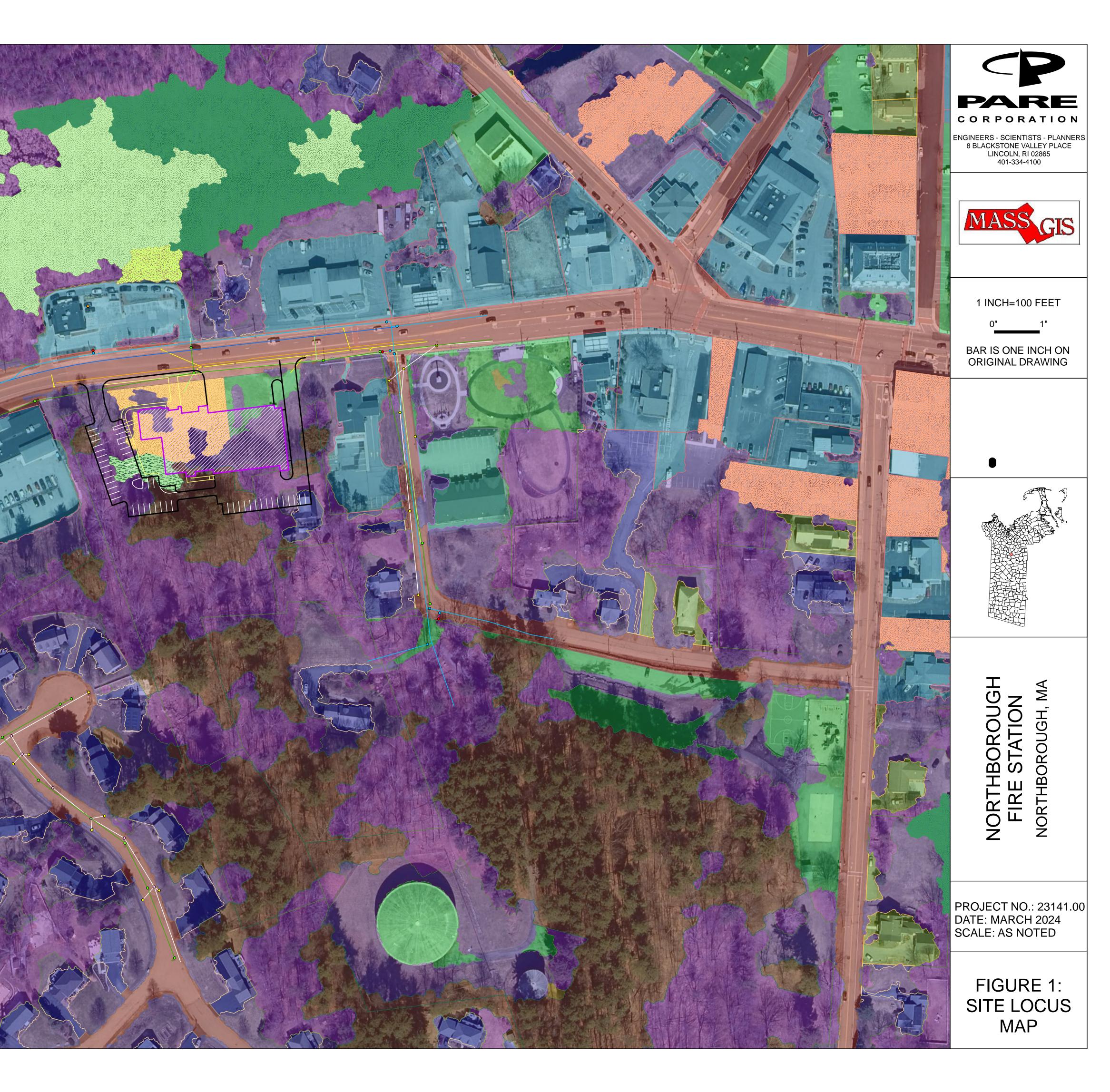

NON-SHRINK EPOXY GROUT

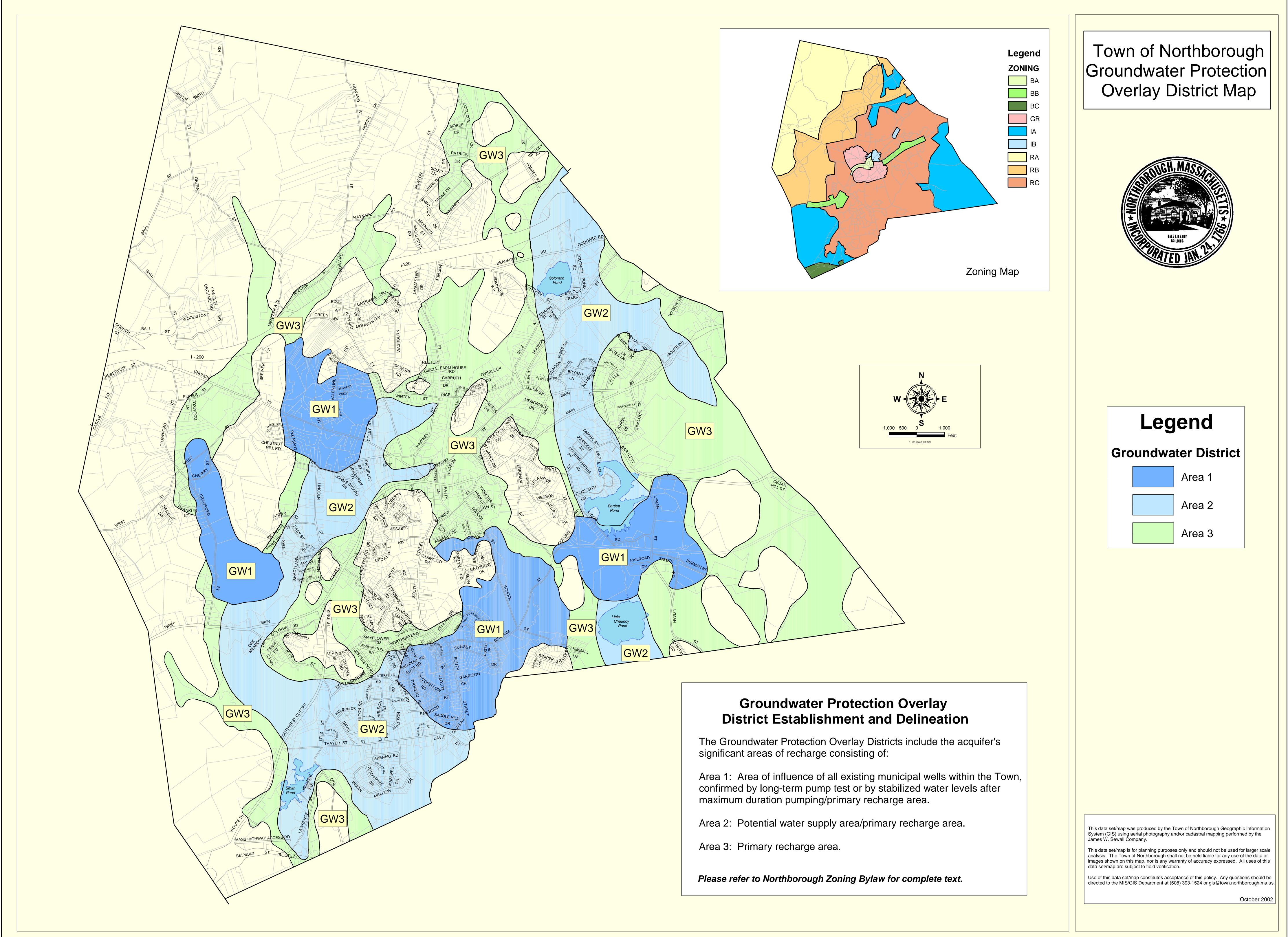
CORE DRILL AND



MEMORIAL STONE - IMAGE 8 SCALE: NTS




DUMPSTER ENCLOSURE - IMAGE (10) SCALE: NTS



100 200 300 40

	Project Name:	
PARE	Project Number:	
CORPORATION		

oject Name: Northborough Fire Station
Northborough Fire Station
23141.00

DENTION SYSTEM -1 BUOYANCY (South)

Assumptions:

Estimated Seasonal High Groundwater Elevation:	303.50	ft*
Specific Weight of Water (SW _w):	62.4	lbs / ft ³
Specific Weight of Unsaturated Soil (SW _s):	120	lbs / ft ³
Unit Weight of Concrete (SW _L)*:	145	lbs / ft ³

Detention System - 1 Specifics:

Finished Grade Elevation:	303.50	ft
Outside Length:	113.0	ft
Outside Width:	27.5	ft
Outside Height:	2.67	ft
Inside Length:	112.0	ft
Inside Width:	26.5	ft
Inside Height:	2.00	ft
Invert:	296.5	ft

Buoyancy:

Groundwater Force (F_b):

SW _w x V =	517,088	lbs
Required Force to Counteract (F _b) usin	ng a FS of 1.	5:
$F_b \times F.S.=$	775,632	lbs

Actual Counteracting Weight:

System Concrete Weight:

Outside Volume of System	8,286.7	cf
Inside Volume of System	5,936.0	cf

Soil Weight:

cigiti.	Area of System (A) :	3,107.5	fť
Min.	Depth of Soil Cover (D):	4.33	ft

Average Pond Area	a (A):	
L x W =	3,108	ft ²

Volume of Ground Water Displaced (V): A x Depth in GW = 8,287 ft³

 $\begin{array}{l} \mbox{Total Volume of System Concrete (V_{GT}):} \\ \mbox{Outside Area - Inside Area = } \underbrace{2,351}_{Weight of Detention System (SW_{GT}):} \\ \mbox{V}_{GT} \ x \ SW_{GT} = \underbrace{340,847}_{Ibs} \ Ibs \end{array}$

Total Volume of Soil (V_s): A x D = <u>13,466</u> ft³ Weight of Soil Cover (SW_s): V_s x SW_s = 1,615,900 lbs

Results:

 Total Weight Counteracting Buoyancy Forces:
 1,956,747
 Ibs

 Actual Factor of Safety:
 3.78

> 517,088 lbs

PARE
CORPORATION

Project Number:

Project Name: Northborough Fire Station 23141.00

Designed By: NPC Checked By:

DENTION SYSTEM -1 BUOYANCY (Southeast)

Assumptions:

Estimated Seasonal High Groundwater Elevation:	303.50	ft*
Specific Weight of Water (SW _w):	62.4	lbs / ft ³
Specific Weight of Unsaturated Soil (SW _s):	120	lbs / ft ³
Unit Weight of Concrete (SW _L)*:	145	lbs / ft ³

Detention System - 1 Specifics:

Finished Grade Elevation:	303.50	ft
Outside Length:	100.0	ft
Outside Width:	13.5	ft
Outside Height:	2.67	ft
Inside Length:	99.0	ft
Inside Width:	12.5	ft
Inside Height:	2.00	ft
Invert:	296.5	ft

Buoyancy:

Groundwater Force (F_b):

SW _w x V =	224,640	lbs
Required Force to Counteract (F_b) usin	ng a FS of 1	.5:
F _b x F.S.=	336,960	lbs

Actual Counteracting Weight:

System Concrete Weight:

Outside Volume of System	3,600.0	cf
Inside Volume of System	2,475.0	cf

Soil Weight:

oigni.	Area of System (A):	1,350.0	fť
Min. D	epth of Soil Cover (D):	1.83	ft

Average Pond Area	a (A):	
L x W =	1,350	ft ²

Volume of Ground Water Displaced (V): A x Depth in GW = 3,600 ft³

Total Volume of System Concrete (V_{GT}): Outside Area - Inside Area = 1,125 ft³ Weight of Detention System (SW_{GT}): $V_{GT} \times SW_{GT} = 163,125$ lbs

> Total Volume of Soil (**V**_s): $A \times D = 2,471 \text{ ft}^3$ Weight of Soil Cover (SWs): $V_{s} \times SW_{s} = 296,460$ lbs

> > >

Results:

224,640 lbs

PARE	
CORPORATION	

Project Name: Northborough Fire Station Project Number:

23141.00

DENTION SYSTEM -1 BUOYANCY (Northeast)

Assumptions:

Estimated Seasonal High Groundwater Elevation:	301.00	ft*
Specific Weight of Water (SW _w):	62.4	lbs / ft ³
Specific Weight of Unsaturated Soil (SW _s):	120	lbs / ft ³
Unit Weight of Concrete (SW _L)*:	145	lbs / ft ³

Detention System - 1 Specifics:

Finished Grade Elevation:	301.00	ft
Outside Length:	85.0	ft
Outside Width:	13.5	ft
Outside Height:	2.67	ft
Inside Length:	84.0	ft
Inside Width:	12.5	ft
Inside Height:	2.00	ft
Invert:	296.5	ft

Buoyancy:

Groundwater Force (F_b):

SW_w x V = **190,944** Ibs Required Force to Counteract (F_b) using a FS of 1.5: F_b x F.S.= **286,416 Ibs**

Actual Counteracting Weight:

System Concrete Weight:

Outside Volume of System	3,060.0	cf
Inside Volume of System	2,100.0	cf

Soil Weight:

cigitt.	Area of System (A):	1,147.5	ft ²
Min. [Depth of Soil Cover (D):	1.83	ft

Average Pond Area (A):			
L x W =	1,148	ft ²	

Volume of Ground Water Displaced (V): A x Depth in GW = 3,060 ft³

Total Volume of System Concrete (V_{GT}): Outside Area - Inside Area = ______ 960 ____ ft³ Weight of Detention System (SW_{GT}): $V_{GT} \times SW_{GT} = 139,200$ lbs

> Total Volume of Soil (V_s): $A \times D = 2,104 \text{ ft}^3$ Weight of Soil Cover (SWs): $V_{s} \times SW_{s} = 252,450$ lbs

Results:

Total Weight Counteracting Buoyancy Forces: 391,650 lbs Actual Factor of Safety: 2.05

190,944 lbs

>

PARE	
CORPORATION	

Project Name: Northborough Fire Station Project Number:

23141.00

DENTION SYSTEM -2 BUOYANCY (Northeast)

Assumptions:

Estimated Seasonal High Groundwater Elevation:	299.67	ft*
Specific Weight of Water (SW _w):	62.4	lbs / ft ³
Specific Weight of Unsaturated Soil (SW _s):	120	lbs / ft ³
Unit Weight of Concrete (SW _L)*:	145	lbs / ft ³

Detention System - 2 Specifics:

Finished Grade Elevation:	301.25	ft
Outside Length:	86.0	ft
Outside Width:	21.0	ft
Outside Height:	2.67	ft
Inside Length:	85.0	ft
Inside Width:	20.0	ft
Inside Height:	2.00	ft
Invert:	297.5	ft

Buoyancy:

Groundwater Force (F_b):

SW_w x V = **244,547** Ibs Required Force to Counteract (F_b) using a FS of 1.5: F_b x F.S.= **366,820** Ibs

Actual Counteracting Weight:

System Concrete Weight:

Outside Volume of System	4,816.0	cf
Inside Volume of System	3,400.0	cf

Soil Weight:

<u>cignt.</u>	Area of System (A):	1,806.0	ft ²
Min. De	epth of Soil Cover (D):	1.08	ft

Average Pond Area	a (A):	
L x W =	1,806	ft ²

Volume of Ground Water Displaced (V): A x Depth in GW = 3,919 ft³

Total Volume of System Concrete (V_{GT}): Outside Area - Inside Area = 1,416 ft³ Weight of Detention System (SW_{GT}): $V_{GT} \times SW_{GT} = 205,320$ lbs

> Total Volume of Soil (**V**_s): $A \times D = 1,957 \text{ ft}^3$ Weight of Soil Cover (SWs): $V_{s} \times SW_{s} = 234,780$ lbs

> > >

Results:

Project Number:

Project Name: Northborough Fire Station 23141.00

Designed By: NPC Checked By:

DENTION SYSTEM -2 BUOYANCY (Southwest)

Assumptions:

Estimated Seasonal High Groundwater Elevation:	303.25	ft*
Specific Weight of Water (SW _w):	62.4	lbs / ft ³
Specific Weight of Unsaturated Soil (SW _s):	120	lbs / ft ³
Unit Weight of Concrete (SW _L)*:	145	lbs / ft ³

Detention System - 2 Specifics:

Finished Grade Elevation:	303.25	ft
Outside Length:	99.0	ft
Outside Width:	34.0	ft
Outside Height:	2.67	ft
Inside Length:	98.0	ft
Inside Width:	33.0	ft
Inside Height:	2.00	ft
Invert:	297.5	ft

Buoyancy:

Groundwater Force (F_b):

SW_w x V = **560,102** Ibs Required Force to Counteract (F_b) using a FS of 1.5: F_b x F.S.= 840,154 lbs

Actual Counteracting Weight:

System Concrete Weight:

Outside Volume of System	8,976.0	cf
Inside Volume of System	6,468.0	cf

Soil Weight:

<u>oigni.</u>	Area of System (A) :	3,366.0	ft ²
Min. De	epth of Soil Cover (D):	3.08	ft

Average Pond Area	a (A):	
$L \times W =$	3,366	ft ²

Volume of Ground Water Displaced (V): A x Depth in GW = 8,976 ft³

Total Volume of System Concrete (V_{GT}): Outside Area - Inside Area = 2,508 ft³ Weight of Detention System (SW_{GT}): $V_{GT} \times SW_{GT} = 363,660$ lbs

> Total Volume of Soil (V_s): $A \times D = 10,379 \text{ ft}^3$ Weight of Soil Cover (SWs): $V_{s} \times SW_{s} = 1,245,420$ lbs

Results:

Total Weight Counteracting Buoyancy Forces: 1,609,080 lbs Actual Factor of Safety: 2.87

560,102 lbs >

	Project Name:	Northborough Fire Station	Designed By:
PARE	Project Number:	23141.00	Checked By:
CORPORATION			· · ·
		DENTION SYSTEM -3 BUOYANCY	

Assumptions:

Estimated Seasonal High Groundwater Elevation:	323.00	ft*
Specific Weight of Water (SW _w):	62.4	lbs / ft ³
Specific Weight of Unsaturated Soil (SW _s):	120	lbs / ft ³
Unit Weight of Concrete $(SW_L)^*$:	145	lbs / ft ³

Detention System - 2 Specifics:

Buoyancy:

Groundwater Force (F_b):

SW_w x V = 620,946 lbs Required Force to Counteract (F_b) using a FS of 1.5: F_b x F.S.= **931,419 Ibs**

Actual Counteracting Weight:

System Concrete Weight:

Outside Volume of System	9,951.1	cf
Inside Volume of System	8,553.8	cf

Soil Weight:

<u>oigni.</u>	Area of System (A) :	1,218.0	ft ²
Min. De	epth of Soil Cover (D):	4.83	ft

Average Pond Area	a (A):	
L x W =	1,218	ft ²

NPC

Volume of Ground Water Displaced (V): A x Depth in GW = 9,951 ft³

Total Volume of System Concrete (V_{GT}): Outside Area - Inside Area = 1,397 ft³ Weight of Detention System (SW_{GT}): $V_{GT} \times SW_{GT} = 202,603$ lbs

> Total Volume of Soil (V_s): $A \times D = 5,883 \text{ ft}^3$ Weight of Soil Cover (SWs): V_s x SW_s = 705,953 lbs

Results:

620,946 lbs

>

STORMWATER MANAGEMENT REPORT

Northborough Fire Station 61&65 West Main Street Northborough, Massachusetts

Assessors Map 63, Lots 9 & 10

Prepared for:

Town of Northborough, MA 63 Main Street Northborough, MA 01532

Prepared by:

Pare Corporation 10 Lincoln Road Foxborough, MA 02035

MARCH 2024

TABLE OF CONTENTS

PROJECT DESCRIPTION

1
1
2
3
3
4
8
12
12

APPENDICES

Appendix A	Locus Map NRCS Soils Map FEMA Firmette IDF Curve TR-55 Curve numbers Design Storms Stormwater Checklist Test Pit Log
Appendix B	Hydrologic Calculations – Existing and Proposed Conditions Hydraulic Design Table
Appendix C	Channel Capacity Calculations Stormwater Treatment – TSS & Phosphorus Calculation Proprietary System Calculations Underground Infiltration System Calculations Mounding Analysis Calculations Recharge Volume Calculations
Appendix D	H1.0 Existing Hydrology H2.0 Proposed Hydrology

PURPOSE

Pare Corporation (Pare) has prepared this report to summarize the stormwater management system for the proposed Town of Northborough's new fire station. The proposed building will be located at 65 West Main Street Northborough, MA. The project will include a new fire station building, parking and access drives, curbing, concrete walks, a retaining wall, associated stormwater management, and utility lines. The project is proposed on three lots, a 2.73 +/- acre parcel, a 0.54 +/- acre parcel and a 0.43 +/- acre property. The existing Site previously contained an abandoned gas station and residential property. The site lies on Northborough's Assessor's Map 63, Lot 7, 9, & 10.

The following sections of the report discuss the existing conditions, proposed development, methodology employed to evaluate stormwater runoff for existing and proposed conditions, and design elements for the proposed stormwater management system components. Supporting documentation is provided in the attached appendices.

PROJECT DESCRIPTION

The study area, hereby referred to as the "Site", included in this hydrologic study comprises approximately $4.51 \pm 4.51 \pm 4.51$ acres of land. The Site is bound by West Main Street and commercial properties to the north and west, a bank to the east, and woodland and residential properties to the south.

There are no established wetland or natural resource areas located in and around the site based on research of GIS overlays on Mass Mapper. There are also no historical records of wetland or natural resource areas in and around the site.

There are no NHESP Priority Habitats, Certified Vernal Pools, or Potential Vernal Pools onsite as mapped by MassGIS. The Site is not located in a Zone II Wellhead Protection Area, Interim Wellhead Protection Area, or Zone I Wellhead Protection Area. Additionally, the Site is not located in a Zone A, B, or C Surface Water Protection Area.

According to the FEMA Flood Insurance Rate Map for Worcester County, Massachusetts (Community-Panel 25027C0634F, revision date July 16, 2014), included in Appendix A of this report, the project Site is located entirely within FEMA Zone X.

The existing topography of the Site generally slopes from the southwest to the southeast. A portion of the site at the east of the site flows to an abutting property, the rest of the site flows overland to a state MS4.

SOIL DATA

NRCS Soil mapping indicates that natural soil in the north of the Site is comprised of Merrimac series sandy loam, 3 to 8 percent slopes. Merrimac series soils are classified as a Hydrologic Soil Group (HSG) rating A. Class A soils are typically well drained to excessively well drained soils. Test pit investigations referenced on this page suggest that this area is better described as a Charlton Series material, a Class B soil that is well drained rather than excessively well drained. This description remains true for all site areas, whether they be located in the north close to the grade of the road or more southerly on the hillside. The southern portion of the Site is located on a drumlin, which typically have tighter, more compacted soils. The more compacted soils from the drumlin may cause a perched water table, if the soil is removed the water table may reset to the depth of the surrounding soils.

A subsurface investigation, inclusive of ten (10) test pits was conducted to evaluate soil conditions at the Site on 2/21/2024 (TP-1 through TP-10). Test pit logs from the investigation are provided in Appendix A.

The soil profile and the natural material found did not vary widely across the ten test pits conducted. Fill was found in TP-102, 103, and 104 at depths ranging from 16" - 18". Natural soil typically saw a 6" - 24" A layer of organics followed by a 2"-13" B layer. The natural occurring parent material in the C layer was a course, homogenized sand; typical of the Carver series suspected to be present. This sand was loose in place, allowing for the conclusion that the parent material across the developed areas of the Site reflect the A type composition previously indicated, though appearing much deeper than the surface depositional layer as found in TP-3. This parent material was found to be overlain by a more recent depositional event, more reflective of the Class B soil used to model surficial hydrology(classified as Merrimac/Paxton in the attached soil logs).

Groundwater varied somewhat widely across the site. In some test pits (TP-3 for example) the groundwater elevation was deeper than the limits of the machine doing the digging. In other test pits (TP-2 or TP-4 for example), the groundwater table was determined through weeping or through redox. For design purposes, bottom of pit was determined to be seasonal high groundwater elevation where no evidence was found. These results, though, reflect a site that may be subject to localized perching of the water table, with the true water table in an on-site well likely reflected a much lower elevation.

Soil disturbance onsite will include the excavation around the foundations for the building addition, construction of the proposed stormwater systems, and excavation for all proposed utilities, in addition

to paving of vehicular areas. Water will be sprayed as necessary to control dust. Existing catch basins in the vicinity of the Site will require inlet protection.

METHODOLOGY

Hydrologic calculations for existing and proposed conditions were performed using HydroCAD Version 10.00 software, which uses TR-55 methodology to calculate runoff and TR-20 methodology for storm routing through the stormwater detention facilities. Site hydrology was evaluated for the 2-year, 10-year, 25-year, and 100-year frequency storms in accordance with the guidelines of the Massachusetts Stormwater Handbook. Existing and Proposed Watershed Maps, indicating the subwatersheds and associated stormwater flow paths may be found in Appendix D.

The hydraulic design calculations were completed using HydroCAD to calculate the accumulated flows to each structure. The stormwater conveyance system was designed using Manning's Equation. The stormwater conveyance system was designed to handle the runoff generated by a 25-year design storm.

EXISTING CONDITIONS OF STUDY AREA

The Site is currently used as a residential property and an abandoned gas station. Also, on site a paved driveways, landscaped areas, and woods. Under existing conditions, six (6) subwatersheds were analyzed, EDA-1, EDA-2A, EDA-2B, EDA-2C, EDA-3A, and EDA-3B.

The existing Site contains approximately 0.74 acres of impervious area within the hydrologic boundary, which consists of paved parking and access areas and existing buildings. The remaining portions of the Site are grassed or wooded areas.

The Site is considered to have three design points (DP-1 Mass DOT East, DP-2 Mass DOT West, DP-3 Bank Parking Lot. DP-1 & 2 are analyzed for flow to the Massachusetts MS4 system. DP-3 is analyzed for flow heading off-site to an abutting property. The Existing Hydrology Plan, H1.0, included in Appendix D, depicts the limits of the Existing Drainage Areas (EDA), described below:

• **EDA-1**: EDA-1 is located at the northwest corner of the site and analyzes on-site flow. It is comprised of woods and grass cover, the composite CN value for this subcatchment is 46. Runoff for this subcatchment flows overland to a catch basin in West Main Street. EDA-1 contributes to Design Point "DP-1 Mass DOT West".

- **EDA-2A**: EDA-2A is located at the north side of the site and analyzes on-site flow. It is comprised of woods, grass cover, paved drives, and existing buildings, the composite CN value for this subcatchment is 67. Runoff for this subcatchment flows overland to a catch basin in West Main Street. EDA-2A contributes to Design Point "DP-2 Mass DOT East".
- **EDA-2B**: EDA-2B is located at the south east side of the site and analyzes off-site flow. It is comprised entirely of woods, the composite CN value for this subcatchment is 70. Runoff for this subcatchment flows overland first over EDA-2A then to a catch basin in West Main Street. EDA-2B contributes to Design Point "DP-2 Mass DOT East".
- **EDA-2C**: EDA-2C is located at the southwest corner of the site and analyzes off-site flow. It is comprised of woods and residential properties, the composite CN value for this subcatchment is 76. Runoff for this subcatchment flows overland first over EDA-2A then to a catch basin in West Main Street. EDA-2C contributes to Design Point "DP-2 Mass DOT East".
- **EDA-3A**: EDA-3A is located in two separate locations, one at the east side of the site and the other on the southeast side if the site. EDA-3A analyzes on-site flow. It is comprised of woods, grass cover, and a paved access drive, the composite CN value for this subcatchment is 56. Runoff for this subcatchment flows overland to a catch basin in the abutting property to the east. EDA-3A contributes to Design Point "DP-3 Bank Parking Lot".

PROPOSED CONDITIONS OF STUDY AREA

Included in the proposed site is a new Fire Station, with associated site features. Those site features include access drives, paved parking, pedestrian walks, a retaining wall, the associated stormwater management, and utilities. The proposed condition has approximately 1.74 acres of impervious cover within the analyzed drainage area, resulting in a net increase of 1.00 acres of impervious.

The site has two main entrances, one in the northwest corner of the site for public access, and one on the northeast corner of the site for fire apparatus and employee access. ADA parking is provided in the western parking lot adjacent to the pedestrian walkway. Parking for visitors and administration is located in the western parking lot, parking for fire staff is on the eastern lot behind the building.

The proposed project will be outfitted with a stormwater system to better achieve groundwater recharge, treatment requirements, and peak flow attenuation. All new stormwater collection, storage, and treatment systems have been designed in accordance with the guidelines of the Massachusetts Stormwater Handbook prepared by the Massachusetts Department of Environmental Protection (MADEP). Post-development runoff rates will be maintained or reduced from the pre-development condition and released into the existing Mass-DOT drainage system. Proposed impervious areas will be treated prior to leaving the Site in accordance with the handbook.

The grading scheme is designed to shed water to match the existing conditions to the maximum extent possible. Grades generally slope away from the Fire Station building to protect the structure from stormwater runoff. Stormwater is conveyed to best management practices (BMP's) via overland flow and a stormwater conveyance system consisting of catch basins, area drains, manholes, and HDPE piping.

The drainage system is designed to incorporate features that address flow rate, quantity of runoff, and quality of runoff from the developed Site. Runoff from the Site flows overland into catch basins, the street, or the building's roof and foundation drainage system into an underground infiltration system or water quality unit. Flow from the water quality units and overflow from infiltration system 1 & 2 is sent to underground detention basins on-site. Underground infiltration system 3 overflow is controlled by a diversion manhole. Overflow from the underground infiltration systems is connected via a pipe to a diversion manhole, which overtops upon the filling of the infiltration system. The overflow in this instance would then flow via pipe to the existing drainage system in the road, where the existing stormwater already flows directly to.

- Source Control and Maintenance: Properly maintaining sources of pollutants promotes a site that produces higher quality stormwater runoff than sites that do not control sources of pollutants. An example of source control includes the removal of sediment buildup from best management practices during regular maintenance per the Long-Term Operations & Maintenance Plan.
- Underground Infiltration System: The underground infiltration system has been designed in accordance with the Massachusetts Stormwater Handbook Standards to promote water quality. The system is sized to exfiltrate the entire water quality volume through the surrounding soils prior to use of any overflows. Any excess stormwater that enters the infiltration system will overflow into the outlet control structure and subsequently into the existing wetlands.
- Water Quality Unit: The water quality unit is a proprietary water quality structure (WQS) that has been designed in accordance with the Massachusetts Stormwater Handbook requirements to promote water quality. The system is sized to treat the water quality flow passing through the system and is also sized to bypass flows during a 25-year storm event. Sizing calculations for the system are included in Appendix C. The units within the scope of the current design achieve 93% TSS removal efficiency and 88.6% Phosphorus removal efficiency.

Under proposed conditions, twenty-two subwatersheds were analyzed. The Proposed Hydrology Plan, H-2.0, included in Appendix D, depicts the limits of the Proposed Drainage Areas (PDA), described below:

- **PDA-1**: PDA-1 is located at the northwest corner of the site and analyzes off-site flow. It is comprised of paved areas and grass cover, the composite CN value for this subcatchment is 83. Runoff for this subcatchment flows overland to a catch basin in West Main Street. PDA-1 contributes to Design Point "DP-1 Mass DOT West".
- **PDA-2A**: PDA-2A is located at the north of the site and analyzes off-site flow. It is comprised of paved areas and grass cover, the composite CN value for this subcatchment is 83. Runoff for this subcatchment flows overland to a catch basin in West Main Street. PDA-2A contributes to Design Point "DP-2 Mass DOT East".
- **PDA-2B**: PDA-2B is located at the northeast corner of the site and analyzes off-site flow. It is comprised of paved areas and grass cover, the composite CN value for this subcatchment is 94. Runoff for this subcatchment flows overland to a catch basin in West Main Street. PDA-2B contributes to Design Point "DP-2 Mass DOT East".
- **PDA-2C**: PDA-2C is located at the northwest corner of the site, north of the proposed building and analyzes both on-site and off-site flow. It is comprised of paved areas and grass cover, the composite CN value for this subcatchment is 73. Runoff for this subcatchment flows overland to an area drain and is sent to Detention Basin 2. PDA-2C contributes to Design Point "DP-2 Mass DOT East".
- **PDA-2D**: PDA-2D is located at the north of the site and analyzes both on-site and off-site flow. It is comprised of paved areas and grass cover, the composite CN value for this subcatchment is 66. Runoff for this subcatchment flows overland to an area drain and is sent to Detention Basin 2. PDA-2D contributes to Design Point "DP-2 Mass DOT East".
- **PDA-2E**: PDA-2E is located at the north of the site and analyzes both on-site and off-site flow. It is comprised entirely of paved area cover, the composite CN value for this subcatchment is 98. Runoff for this subcatchment flows overland to a catch basin and is sent to Detention Basin 2. PDA-2E contributes to Design Point "DP-2 Mass DOT East".
- **PDA-2F**: PDA-2F is located at the northeast corner of the site and analyzes both on-site and off-site flow. It is comprised of paved areas and grass cover, the composite CN value for this subcatchment is 94. Runoff for this subcatchment flows overland to a catch basin and is sent to Detention Basin 1. PDA-2F contributes to Design Point "DP-2 Mass DOT East".
- **PDA-2G**: PDA-2G is located at the northeast corner of the site and analyzes both on-site and off-site flow. It is comprised of paved areas and grass cover, the composite CN value for this subcatchment is 85. Runoff for this subcatchment flows overland to a catch basin and is sent to Detention Basin 1. PDA-2G contributes to Design Point "DP-2 Mass DOT East".

- **PDA-2H**: PDA-2H is located at the east of the site and analyzes on-site flow. It is comprised of paved areas and grass cover, the composite CN value for this subcatchment is 94. Runoff for this subcatchment flows overland to a catch basin and is sent to Detention Basin 1. PDA-2H contributes to Design Point "DP-2 Mass DOT East".
- **PDA-2I**: PDA-2I is located at the east of the site and analyzes on-site flow. It is comprised of paved areas and grass cover, the composite CN value for this subcatchment is 61. Runoff for this subcatchment flows overland to an area drain and sent to UGIS-5. PDA-2I contributes to Design Point "DP-2 Mass DOT East".
- **PDA-2J**: PDA-2J is located at the center of the site, south of the proposed building and analyzes on-site flow. It is comprised of paved areas and grass cover, the composite CN value for this subcatchment is 94. Runoff for this subcatchment flows overland to a catch basin and is sent to Detention Basin 1. PDA-2J contributes to Design Point "DP-2 Mass DOT East".
- **PDA-2K**: PDA-2K is located in the center of the site, southwest of the proposed building and analyzes on-site flow. It is comprised of paved areas and grass cover, the composite CN value for this subcatchment is 64. Runoff for this subcatchment flows overland to an area drain and is sent to Detention Basin 2. PDA-2K contributes to Design Point "DP-2 Mass DOT East".
- **PDA-2L**: PDA-2L is located in the center of the site, southeast of the proposed building and analyzes on-site flow. It is comprised of paved areas and grass cover, the composite CN value for this subcatchment is 93. Runoff for this subcatchment flows overland to a catch basin and is sent to Detention Basin 2. PDA-2L contributes to Design Point "DP-2 Mass DOT East".
- **PDA-2M**: PDA-2M is located at the northwest corner of the site and analyzes on-site flow. It is comprised of paved areas, woods, and grass cover, the composite CN value for this subcatchment is 85. Runoff for this subcatchment flows overland to a catch basin and is sent to Detention Basin 2. PDA-2M contributes to Design Point "DP-2 Mass DOT East".
- **PDA-2N**: PDA-2N is located at the west of the site and analyzes on-site flow. It is comprised of woods and grass cover, the composite CN value for this subcatchment is 61. Runoff for this subcatchment flows overland to an area drain and is sent to UGIS-1. PDA-2N contributes to Design Point "DP-2 Mass DOT East".
- **PDA-2O**: PDA-2O is located in the center of the site, south of the proposed retaining wall and analyzes on-site flow. It is comprised of paved areas, woods, and grass cover, the composite CN value for this subcatchment is 56. Runoff for this subcatchment flows overland to an area drain and is sent to UGIS-3. PDA-2O contributes to Design Point "DP-2 Mass DOT East".
- **PDA-2P**: PDA-2P is located at the southeast corner of the site and analyzes off-site flow. It is comprised entirely of woods, the composite CN value for this subcatchment is 55. Runoff for

this subcatchment flows overland to an area drain and is sent to UGIS-3. PDA-2P contributes to Design Point "DP-2 Mass DOT East".

- **PDA-2Q**: PDA-2Q is located at the southwest corner of the site and analyzes off-site flow. It is comprised of paved areas, woods, roof cover, and grass cover, the composite CN value for this subcatchment is 68. Runoff for this subcatchment flows overland to an area drain and is sent to UGIS-3. PDA-2Q contributes to Design Point "DP-2 Mass DOT East".
- **PDA-2R**: PDA-2R is located at the east side of the site and analyzes on-site flow. It is comprised of woods and grass cover, the composite CN value for this subcatchment is 61. Runoff for this subcatchment flows overland to an area drain and is sent to UGIS-3. PDA-2R contributes to Design Point "DP-2 Mass DOT East".
- **PDA-ROOF1**: PDA-ROOF1 is located at the center of the site and analyzes on-site flow. It is comprised entirely of roof cover, the composite CN value for this subcatchment is 98. Runoff for this subcatchment is captured and piped to Detention Basin 2. PDA-ROOF1 contributes to Design Point "DP-2 Mass DOT East".
- **PDA-ROOF2**: PDA-ROOF2 is located at the center of the site and analyzes on-site flow. It is comprised entirely of roof cover, the composite CN value for this subcatchment is 98. Runoff for this subcatchment is captured and piped to UGIS-2. PDA-ROOF2 contributes to Design Point "DP-2 Mass DOT East".
- **PDA-ROOF3**: PDA-ROOF3 is located at the center of the site and analyzes on-site flow. It is comprised entirely of roof cover, the composite CN value for this subcatchment is 98. Runoff for this subcatchment is captured and piped to Detention Basin 2. PDA-ROOF2 contributes to Design Point "DP-2 Mass DOT East".

STORMWATER MANAGEMENT STANDARDS

This proposed stormwater management system complies with the current regulations of the Massachusetts Stormwater Handbook) and the Town of Northborough requirements. Compliance and applicability of the ten (10) Stormwater Management Standards for this redevelopment project are discussed below.

STANDARD #1 – NO NEW UNTREATED DISCHARGES

No new point discharges of untreated stormwater are proposed for the project. Water quality is achieved by source control and conveying stormwater from impervious areas through the proposed best management practices. Stormwater throughout the Site is treated using the proposed underground infiltration systems and proprietary water quality systems. Portions of the Site directly adjacent to offsite areas will remain untreated as in the existing condition.

STANDARD #2 – POST-DEVELOPMENT PEAK DISCHARGE RATES

MassDEP Stormwater Standard #2 states that runoff rates from the developed Site must not exceed existing runoff rates for the 2-year and 10-year, 24-hour storm events. Standard 2 states that the 100-year, 24-hour storm event must also be evaluated to demonstrate that there will be no increased flooding impacts off-site. The 25-year storm is shown for additional clarity.

The proposed stormwater management system is designed to reduce runoff rates from the 2-, 10-, 25-, and 100-year, 24-hour storm events. This is achieved by controlling runoff using the proposed stormwater management systems and their associated outlet control structures.

Existing and proposed peak runoff rates from the Site were generated for the rainfall events having a return rate of 2-year, 10-year, and 100-year using the SCS TR-20 Method (refer to Appendix B for hydrology calculations). Runoff hydrographs were developed for the existing and proposed conditions for each of the design points of the Site. Results for each storm event and the net difference in pre- and post-development flows are shown in Table 1 below; a negative number indicates flows are decreased in the proposed condition. The peak flows for this site have been reduced at all design points, however the peak volumes for design point 2 going to the Mass DOT system are increasing.

Design Storm:	2	10	25	100		
DP-1: Mass-DOT	West					
Pre	0.08	0.32	0.49	0.79		
Post	0.07	0.14	0.18	0.24		
Difference	-0.01	-0.18	-0.31	-0.55		
DP-2: Mass-DOT	DP-2: Mass-DOT East					
Pre	2.91	8.92	13.49	21.00		
Post	2.77	4.89	6.25	10.83		
Difference	-0.14	-4.03	-7.24	-10.17		
DP-3: Bank Parki	ng Lot					
Pre	0.01	0.06	0.10	0.16		
Post	0.00	0.00	0.10	0.00		
Difference	-0.01	-0.06	-0.10	-0.16		

Table 1: Peak Flow Table (CFS)

Table 2: Peak Volume Table (CF)

Design Storm:	2	10	25	100			
DP-1: Mass-DOT West							
Pre	239	707	1,069	1,701			

Post	159	304	398	548
Percent Reduction	33.5%	57.0%	62.8%	67.8%
DP-2: Mass-DOT Eas	st			
Pre	10,091	25,672	37,237	56,950
Post	18,058	36,608	49,629	71,293
				-
Percent Reduction	-79.0%	-42.6%	-33.3%	25.2%
DP-3: Bank Parking	Lot			
Pre	43	139	214	346
Post	0	0	0	0
Percent Reduction	100%	100%	100%	100%

STANDARD #3 - RECHARGE TO GROUNDWATER

Stormwater Standard #3 states that loss of groundwater recharge from the proposed development shall be eliminated or minimized and at a minimum, the recharge volume, which is dependent on soil type, shall be recharged to the groundwater. The intent of this standard is to ensure that the infiltration volume of precipitation into the ground under post-development conditions is at least as much as the infiltration volume under pre-development conditions. This standard is being met through the use of an underground infiltration BMP. Groundwater recharge calculations are provided in Appendix C of this report.

STANDARD #4 – TSS REMOVAL

Stormwater Standard #4 requires that stormwater management systems shall be designed to remove the annual post-construction load of Total Suspended Solids (TSS) to the maximum extent practicable. TSS is being removed using underground infiltration systems and proprietary systems. See Appendix C for TSS calculations.

STANDARD #5 – LAND USES WITH HIGHER POTENTIAL POLLUTANT LOADS (LUHPPL)

Standard #5 specifies that LUHPPLs appropriately reduce and control potential pollutants from entering groundwater or waterways. LUHPPLs are identified in the Massachusetts stormwater handbook as "Land uses with higher potential pollutant loads are defined in 310 CMR 10.04 and 314 CMR 9.02 to include the following: Land uses identified in 310 CMR 22.20B(2), 310 CMR 22.20C(2)(a)-(k) and (m), 310 CMR 22.21(2)(a)(1)-(8) and 310 CMR 22.21(2)(b)(1)-(6)". 310 CMR 22.21(2)(b)6 notes that a cut of soil within 4' of the historical high groundwater table would qualify as a LUHPPL. Since there is a large elevation change over the Site, a cut within 4' of the historic high ground water table will be

required. The proposed system complies with 314 CMR 3.00, 4.00, and 5.00. For a detailed source control and pollution prevention plan see Standard #8. See Standard #4 for TSS removal compliance.

STANDARD #6 - PROTECTION OF CRITICAL AREAS

The proposed development is not located within a Zone II or Interim Wellhead Protection Area. Standard #6 is not applicable to this project.

STANDARD #7 – REDEVELOPMENT PROJECTS

The proposed development is designated as a new development, therefore Standard #7 is not applicable to this project.

STANDARD #8 – EROSION & SEDIMENT CONTROL PLAN

The project proposes to disturb greater than 1 acre of land and is therefore required to develop a Storm Water Pollution Prevention Plan (SWPPP) in accordance with the Environmental Protection Agency (EPA) National Pollution Discharge Elimination System (NPDES) Construction General Permit (CGP) for discharges from construction activities. The SWPPP will include means and methods at the discretion of the Contractor to comply with the NPDES CGP. The SWPPP and the Notice of Intent under the CGP will be required to be prepared and submitted by the Contractor as the Operator of the Site. The SWPPP is required to be submitted to the town prior to the start of earth disturbing activities.

Minimum erosion and sediment control features, including perimeter silt fencing, filter socks, and inlet protection are shown on the Project Plans.

STANDARD #9 – OPERATIONS AND MAINTENANCE PLAN

The Town of Northborough will be responsible for the Operation and Maintenance of the Stormwater Management System post-construction. The Stormwater Operation and Maintenance Plan is included under separate cover.

STANDARD #10 – ILLICIT DISCHARGES

The Stormwater Management System has been designed to treat stormwater by a best-management practice prior to discharge. To Pare Corporation's knowledge, based on the best-available information and in-field reviews of the current Site, there are no known non-stormwater discharges that will be connected to the proposed stormwater collection system that would convey pollutants directly to groundwater or surface waters.

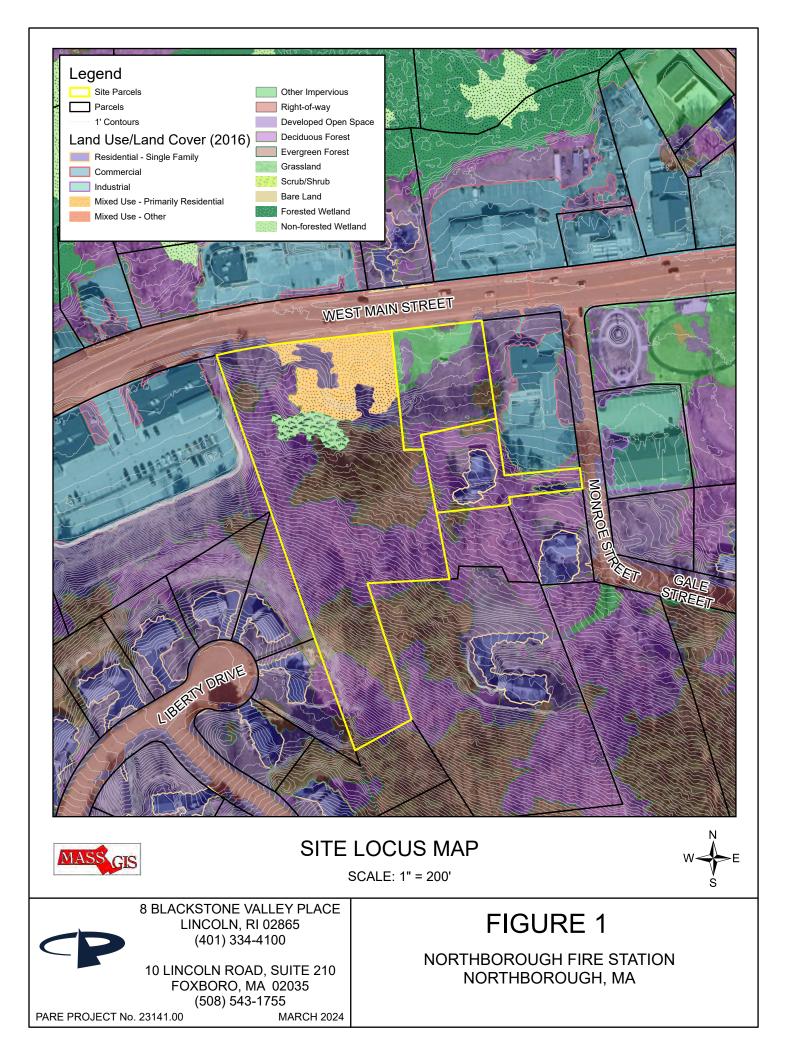
PROPOSED DRAINAGE CONVEYANCE SYSTEM

The proposed stormwater conveyance system includes catch basins, drain manholes, an outlet control structures, water quality units, detention basins, and underground infiltration systems. The proposed system has been designed for a 25-year 24-hour storm event utilizing the Rational Method. The Manning equation was used to model the stormwater conveyance system and perform the hydraulic analysis of the system. The following criteria were used to design the conveyance system:

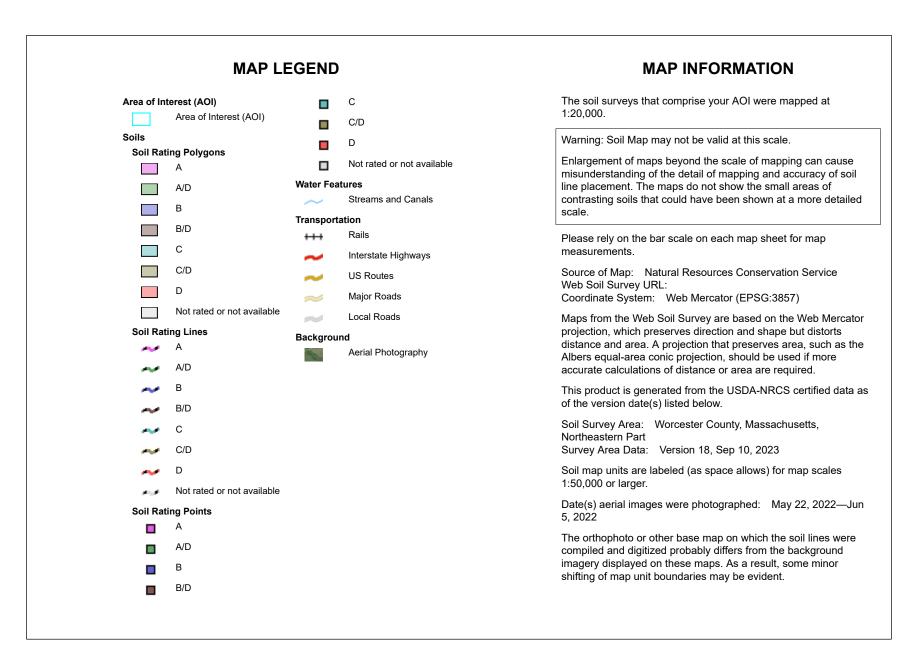
- Manholes are provided at directional changes, connections, and conduit size increases.
- Pipes are designed to convey the 25-year stormwater event.
- All new conduit is HDPE pipe sized 12" diameter or larger.
- Minimum pipe velocity is 0.83 feet per second.
- Maximum pipe velocity is 7.85 feet per second.

All pipes are modeled in the hydraulic calculations in Appendix B of this report.

SUMMARY


The proposed developments at 65 West Main Street will be creating new impervious areas. The postdevelopment stormwater management system has been designed in accordance with the Massachusetts Stormwater Handbook requirements to the maximum extent practical. The proposed stormwater management system addresses both the quantity and quality of the stormwater runoff. The stormwater management system promotes recharge and ultimately provides reductions in peak runoff rate within the hydrologic analysis area for the design storm events. The development of the property is proposed to improve existing conditions and the stormwater discharges to the State Right of Way.

Town of Northborough NORTHBOROUGH FIRE STATION


APPENDIX A

Locus Map NRCS Soils Map FEMA Firmette IDF Curve TR-55 Curve Numbers Design Storms Stormwater Checklist Test Pit Logs

USDA Natural Resources Conservation Service Web Soil Survey National Cooperative Soil Survey

Hydrologic Soil Group

Map unit symbol	Map unit name	Rating	Acres in AOI	Percent of AOI
51A	Swansea muck, 0 to 1 percent slopes	B/D	0.0	0.0%
254B	Merrimac fine sandy loam, 3 to 8 percent slopes	A	5.0	56.3%
254C	Merrimac fine sandy loam, 8 to 15 percent slopes	A	0.0	0.1%
305D	Paxton fine sandy loam, 15 to 25 percent slopes	С	0.9	10.6%
306C	Paxton fine sandy loam, 8 to 15 percent slopes, very stony	С	2.9	33.1%
Totals for Area of Inter	rest		8.9	100.0%

Description

Hydrologic soil groups are based on estimates of runoff potential. Soils are assigned to one of four groups according to the rate of water infiltration when the soils are not protected by vegetation, are thoroughly wet, and receive precipitation from long-duration storms.

The soils in the United States are assigned to four groups (A, B, C, and D) and three dual classes (A/D, B/D, and C/D). The groups are defined as follows:

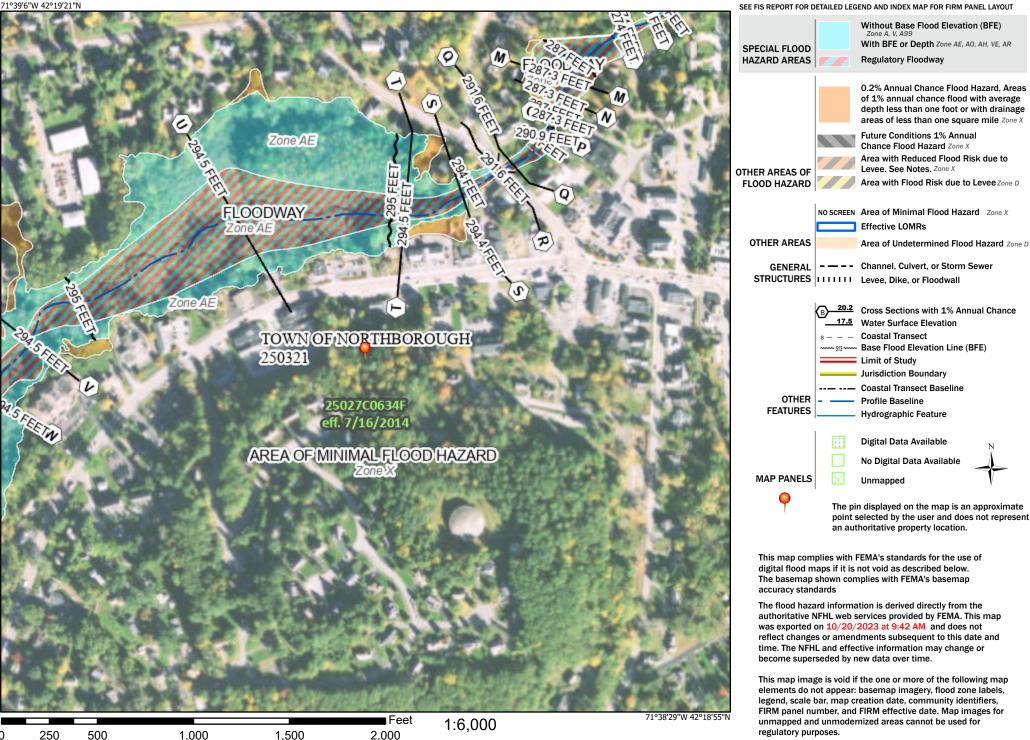
Group A. Soils having a high infiltration rate (low runoff potential) when thoroughly wet. These consist mainly of deep, well drained to excessively drained sands or gravelly sands. These soils have a high rate of water transmission.

Group B. Soils having a moderate infiltration rate when thoroughly wet. These consist chiefly of moderately deep or deep, moderately well drained or well drained soils that have moderately fine texture to moderately coarse texture. These soils have a moderate rate of water transmission.

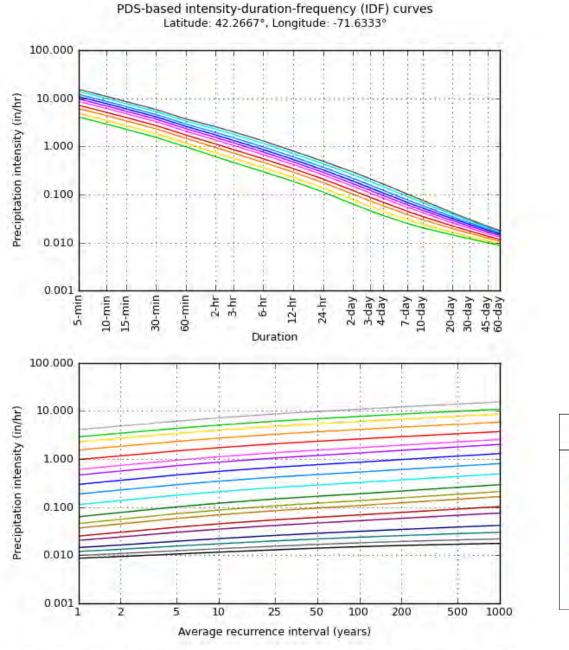
Group C. Soils having a slow infiltration rate when thoroughly wet. These consist chiefly of soils having a layer that impedes the downward movement of water or soils of moderately fine texture or fine texture. These soils have a slow rate of water transmission.

Group D. Soils having a very slow infiltration rate (high runoff potential) when thoroughly wet. These consist chiefly of clays that have a high shrink-swell potential, soils that have a high water table, soils that have a claypan or clay layer at or near the surface, and soils that are shallow over nearly impervious material. These soils have a very slow rate of water transmission.

If a soil is assigned to a dual hydrologic group (A/D, B/D, or C/D), the first letter is for drained areas and the second is for undrained areas. Only the soils that in their natural condition are in group D are assigned to dual classes.


Rating Options

Aggregation Method: Dominant Condition Component Percent Cutoff: None Specified Tie-break Rule: Higher


National Flood Hazard Layer FIRMette

Legend

Basemap Imagery Source: USGS National Map 2023

Average recurrence interval (years)

> 1 2

5 10 25

50 100 200

500 500

NOAA Atlas 14, Volume 10, Version 3

Created (GMT): Thu Nov 12 16:06:19 2020

Back to Top

Maps & aerials

Small scale terrain

Table 2-2aRunoff curve numbers for urban areas 1/

			umbers for		
Cover description		——hydrologic soil group ——			
	Average percent				
Cover type and hydrologic condition	impervious area 2/	Α	В	С	D
Fully developed urban areas (vegetation established)					
Open space (lawns, parks, golf courses, cemeteries, etc.) ^{3/} :					
Poor condition (grass cover < 50%)		68	79	86	89
Fair condition (grass cover 50% to 75%)		49	69	79	84
Good condition (grass cover > 75%)		39	61	74	80
Impervious areas:					
Paved parking lots, roofs, driveways, etc.					
(excluding right-of-way)		98	98	98	98
Streets and roads:		00	00	00	
Paved; curbs and storm sewers (excluding					
right-of-way)		98	98	98	98
Paved; open ditches (including right-of-way)		83	89	92	93
Gravel (including right-of-way)		76	85	89	91
Dirt (including right-of-way)		70 72	82	87	89
Western desert urban areas:		14	02	01	06
Natural desert landscaping (pervious areas only) 4		63	77	85	88
Artificial desert landscaping (impervious weed barrier,		05		85	00
desert shrub with 1- to 2-inch sand or gravel mulch					
and basin borders)		96	96	96	96
Urban districts:	••••••	90	90	90	90
Commercial and business		89	92	94	95
		89 81	92 88	94 91	90 93
Industrial		01	00	91	95
Residential districts by average lot size:	65	77	OF	00	05
1/8 acre or less (town houses)			85 75	90	92
1/4 acre		61	75 79	83	87
1/3 acre		57	72 70	81	86
1/2 acre		54	70 60	80 70	85
1 acre		51	68 67	79	84
2 acres	12	46	65	77	82
Developing urban areas					
Newly graded areas					
(pervious areas only, no vegetation) $5/$		77	86	91	94
Idle lands (CN's are determined using cover types					
similar to those in table 2-2c).					

¹ Average runoff condition, and $I_a = 0.2S$.

² The average percent impervious area shown was used to develop the composite CN's. Other assumptions are as follows: impervious areas are directly connected to the drainage system, impervious areas have a CN of 98, and pervious areas are considered equivalent to open space in good hydrologic condition. CN's for other combinations of conditions may be computed using figure 2-3 or 2-4.

³ CN's shown are equivalent to those of pasture. Composite CN's may be computed for other combinations of open space cover type.

⁴ Composite CN's for natural desert landscaping should be computed using figures 2-3 or 2-4 based on the impervious area percentage (CN = 98) and the pervious area CN. The pervious area CN's are assumed equivalent to desert shrub in poor hydrologic condition.

⁵ Composite CN's to use for the design of temporary measures during grading and construction should be computed using figure 2-3 or 2-4 based on the degree of development (impervious area percentage) and the CN's for the newly graded pervious areas.

Precipitation Frequency Data Server

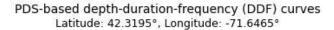
POINT PRECIPITATION FREQUENCY ESTIMATES

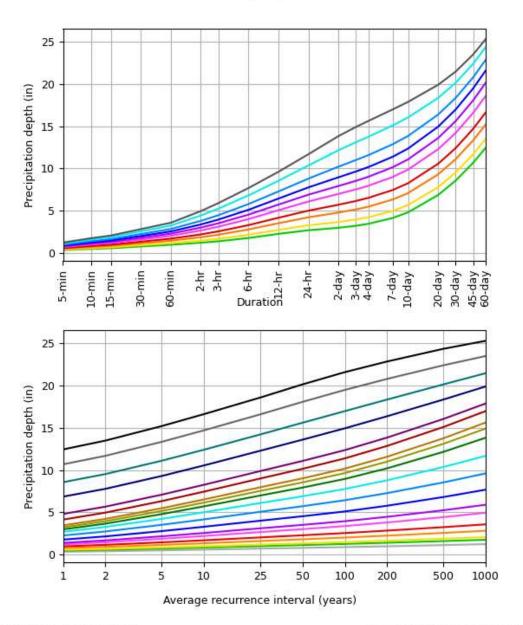
Sanja Perica, Sandra Pavlovic, Michael St. Laurent, Carl Trypaluk, Dale Unruh, Orlan Wilhite

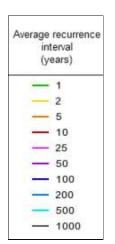
NOAA, National Weather Service, Silver Spring, Maryland

PF_tabular | PF_graphical | Maps_&_aerials

PF tabular


	based point precipitation frequency estimates with 90% confidence intervals (in inches) ¹ Average recurrence interval (years)									
Duration	1	2	5	10	25	50	100	200	500	1000
5-min	0.346	0.408	0.510	0.595	0.712	0.800	0.892	0.992	1.13	1.24
	(0.264-0.445)	(0.312-0.526)	(0.389-0.660)	(0.451-0.774)	(0.524-0.966)	(0.578-1.11)	(0.626-1.28)	(0.665-1.46)	(0.732-1.72)	(0.787-1.94
10-min	0.490	0.578	0.723	0.843	1.01	1.13	1.26	1.41	1.60	1.76
	(0.375-0.631)	(0.442-0.746)	(0.551-0.936)	(0.639-1.10)	(0.742-1.37)	(0.819-1.57)	(0.887-1.81)	(0.942-2.07)	(1.04-2.45)	(1.12-2.74)
15-min	0.576	0.680	0.850	0.992	1.19	1.33	1.49	1.65	1.89	2.07
	(0.441-0.742)	(0.520-0.877)	(0.648-1.10)	(0.752-1.29)	(0.873-1.61)	(0.963-1.85)	(1.04-2.13)	(1.11-2.44)	(1.22-2.88)	(1.31-3.23)
30-min	0.779	0.921	1.15	1.35	1.61	1.81	2.02	2.25	2.57	2.83
	(0.596-1.00)	(0.704-1.19)	(0.879-1.49)	(1.02-1.75)	(1.19-2.19)	(1.31-2.51)	(1.42-2.90)	(1.51-3.31)	(1.66-3.92)	(1.79-4.40)
60-min	0.982	1.16	1.46	1.70	2.04	2.29	2.56	2.85	3.25	3.58
	(0.751-1.26)	(0.888-1.50)	(1.11-1.88)	(1.29-2.21)	(1.50-2.76)	(1.65-3.17)	(1.80-3.67)	(1.91-4.19)	(2.10-4.96)	(2.27-5.58)
2-hr	1.22	1.47	1.87	2.21	2.67	3.01	3.38	3.81	4.44	4.96
	(0.939-1.56)	(1.13-1.88)	(1.43-2.41)	(1.68-2.86)	(1.98-3.62)	(2.20-4.17)	(2.40-4.87)	(2.56-5.58)	(2.88-6.72)	(3.15-7.67)
3-hr	1.39	1.69	2.17	2.56	3.11	3.52	3.96	4.48	5.25	5.91
	(1.08-1.78)	(1.30-2.16)	(1.67-2.78)	(1.96-3.31)	(2.32-4.21)	(2.58-4.87)	(2.83-5.70)	(3.02-6.54)	(3.41-7.93)	(3.76-9.10)
6-hr	1.78	2.16	2.78	3.30	4.01	4.54	5.11	5.79	6.81	7.68
	(1.38-2.26)	(1.68-2.74)	(2.15-3.55)	(2.54-4.23)	(3.00-5.40)	(3.34-6.25)	(3.67-7.32)	(3.92-8.40)	(4.44-10.2)	(4.90-11.8)
12 - hr	2.27	2.74	3.52	4.17	5.06	5.73	6.44	7.28	8.54	9.61
	(1.77-2.86)	(2.14-3.47)	(2.74-4.47)	(3.23-5.32)	(3.81-6.77)	(4.23-7.83)	(4.64-9.15)	(4.94-10.5)	(5.59-12.7)	(6.15-14.6)
24-hr	2.70	3.28	4.23	5.02	6.10	6.90	7.77	8.80	10.4	11.7
	(2.12-3.39)	(2.58-4.12)	(3.31-5.34)	(3.91-6.37)	(4.62-8.11)	(5.13-9.39)	(5.64-11.0)	(6.00-12.6)	(6.80-15.4)	(7.50-17.6)
2-day	2.99 (2.37-3.73)	3.67 (2.90-4.59)	4.79 (3.78-6.01)	5.72 (4.48-7.21)	6.99 (5.33-9.26)	7.93 (5.94-10.8)	8.96 (6.56-12.7)	10.2 (6.99-14.6)	12.2 (8.00-17.9)	13.8 (8.91-20.7)
3-day	3.23	3.96	5.16	6.16	7.53	8.55	9.65	11.0	13.1	14.9
	(2.57-4.02)	(3.15-4.94)	(4.09-6.46)	(4.85-7.75)	(5.76-9.95)	(6.42-11.6)	(7.08-13.6)	(7.55-15.6)	(8.64-19.2)	(9.62-22.3)
4-day	3.46 (2.76-4.30)	4.23 (3.37-5.27)	5.49 (4.36-6.85)	6.53 (5.15-8.20)	7.96 (6.11-10.5)	9.02 (6.79-12.2)	10.2 (7.48-14.3)	11.6 (7.96-16.4)	13.8 (9.09-20.1)	15.6 (10.1-23.3)
7-day	4.14 (3.32-5.13)	4.97 (3.98-6.16)	6.33 (5.05-7.87)	7.45 (5.91-9.31)	9.00 (6.92-11.8)	10.2 (7.66-13.6)	11.4 (8.37-15.8)	12.9 (8.87-18.1)	15.1 (10.0-21.9)	17.0 (11.0-25.2)
10-day	4.82 (3.87-5.94)	5.68 (4.56-7.02)	7.09 (5.68-8.79)	8.26 (6.58-10.3)	9.88 (7.61-12.8)	11.1 (8.37-14.7)	12.4 (9.07-17.0)	13.9 (9.58-19.4)	16.0 (10.7-23.2)	17.9 (11.6-26.4)
20-day	6.86 (5.56-8.42)	7.79 (6.30-9.57)	9.30 (7.49-11.5)	10.6 (8.45-13.1)	12.3 (9.50-15.8)	13.6 (10.3-17.8)	14.9 (10.9-20.2)	16.4 (11.4-22.8)	18.4 (12.3-26.4)	19.9 (12.9-29.2)
30-day	8.57 (6.96-10.5)	9.53 (7.74-11.7)	11.1 (8.98-13.6)	12.4 (9.98-15.3)	14.2 (11.0-18.1)	15.6 (11.8-20.3)	17.0 (12.4-22.7)	18.4 (12.8-25.4)	20.1 (13.5-28.8)	21.5 (14.0-31.3)
45-day	10.7 (8.72-13.0)	11.7 (9.53-14.3)	13.3 (10.8-16.3)	14.7 (11.9-18.1)	16.6 (12.9-21.0)	18.1 (13.7-23.3)	19.5 (14.2-25.8)	20.8 (14.6-28.6)	22.4 (15.1-31.9)	23.5 (15.3-34.2)
60-day	12.4 (10.2-15.1)	13.5 (11.0-16.4)	15.2 (12.4-18.6)	16.6 (13.5-20.4)	18.6 (14.5-23.5)	20.1 (15.3-25.9)	21.6 (15.7-28.4)	22.9	24.4	25.3


¹ Precipitation frequency (PF) estimates in this table are based on frequency analysis of partial duration series (PDS).


Numbers in parenthesis are PF estimates at lower and upper bounds of the 90% confidence interval. The probability that precipitation frequency estimates (for a given duration and average recurrence interval) will be greater than the upper bound (or less than the lower bound) is 5%. Estimates at upper bounds are not checked against probable maximum precipitation (PMP) estimates and may be higher than currently valid PMP values. Please refer to NOAA Atlas 14 document for more information.

Back to Top

PF graphical

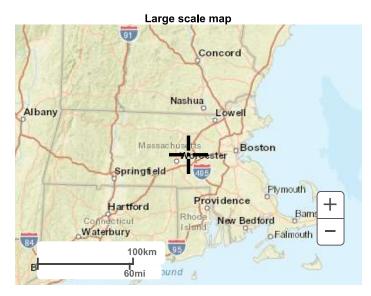
Dura	ation
5-min	2-day
10-min	— 3-day
15-min	— 4-day
30-min	- 7-day
- 60-min	— 10-day
— 2-hr	- 20-day
— 3-hr	— 30-day
— 6-hr	— 45-day
— 12-hr	- 60-day
— 24-hr	

NOAA Atlas 14, Volume 10, Version 3

Created (GMT): Tue Feb 13 17:07:10 2024

Back to Top

Maps & aerials


Small scale terrain

Precipitation Frequency Data Server

Large scale terrain

Large scale aerial

Precipitation Frequency Data Server

Back to Top

US Department of Commerce National Oceanic and Atmospheric Administration National Weather Service National Water Center 1325 East West Highway Silver Spring, MD 20910 Questions?: <u>HDSC,Questions@noaa.gov</u>

Disclaimer

Massachusetts Department of Environmental Protection Bureau of Resource Protection - Wetlands Program Checklist for Stormwater Report

A. Introduction

Important: When filling out forms on the computer, use only the tab key to move your cursor - do not use the return key.

A Stormwater Report must be submitted with the Notice of Intent permit application to document compliance with the Stormwater Management Standards. The following checklist is NOT a substitute for the Stormwater Report (which should provide more substantive and detailed information) but is offered here as a tool to help the applicant organize their Stormwater Management documentation for their Report and for the reviewer to assess this information in a consistent format. As noted in the Checklist, the Stormwater Report must contain the engineering computations and supporting information set forth in Volume 3 of the Massachusetts Stormwater Handbook. The Stormwater Report must be prepared and certified by a Registered Professional Engineer (RPE) licensed in the Commonwealth.

The Stormwater Report must include:

- The Stormwater Checklist completed and stamped by a Registered Professional Engineer (see page 2) that certifies that the Stormwater Report contains all required submittals.¹ This Checklist is to be used as the cover for the completed Stormwater Report.
- Applicant/Project Name
- Project Address
- Name of Firm and Registered Professional Engineer that prepared the Report
- Long-Term Pollution Prevention Plan required by Standards 4-6
- Construction Period Pollution Prevention and Erosion and Sedimentation Control Plan required by Standard 8²
- Operation and Maintenance Plan required by Standard 9

In addition to all plans and supporting information, the Stormwater Report must include a brief narrative describing stormwater management practices, including environmentally sensitive site design and LID techniques, along with a diagram depicting runoff through the proposed BMP treatment train. Plans are required to show existing and proposed conditions, identify all wetland resource areas, NRCS soil types, critical areas, Land Uses with Higher Potential Pollutant Loads (LUHPPL), and any areas on the site where infiltration rate is greater than 2.4 inches per hour. The Plans shall identify the drainage areas for both existing and proposed conditions at a scale that enables verification of supporting calculations.

As noted in the Checklist, the Stormwater Management Report shall document compliance with each of the Stormwater Management Standards as provided in the Massachusetts Stormwater Handbook. The soils evaluation and calculations shall be done using the methodologies set forth in Volume 3 of the Massachusetts Stormwater Handbook.

To ensure that the Stormwater Report is complete, applicants are required to fill in the Stormwater Report Checklist by checking the box to indicate that the specified information has been included in the Stormwater Report. If any of the information specified in the checklist has not been submitted, the applicant must provide an explanation. The completed Stormwater Report Checklist and Certification must be submitted with the Stormwater Report.

¹ The Stormwater Report may also include the Illicit Discharge Compliance Statement required by Standard 10. If not included in the Stormwater Report, the Illicit Discharge Compliance Statement must be submitted prior to the discharge of stormwater runoff to the post-construction best management practices.

² For some complex projects, it may not be possible to include the Construction Period Erosion and Sedimentation Control Plan in the Stormwater Report. In that event, the issuing authority has the discretion to issue an Order of Conditions that approves the project and includes a condition requiring the proponent to submit the Construction Period Erosion and Sedimentation Control Plan before commencing any land disturbance activity on the site.

B. Stormwater Checklist and Certification

The following checklist is intended to serve as a guide for applicants as to the elements that ordinarily need to be addressed in a complete Stormwater Report. The checklist is also intended to provide conservation commissions and other reviewing authorities with a summary of the components necessary for a comprehensive Stormwater Report that addresses the ten Stormwater Standards.

Note: Because stormwater requirements vary from project to project, it is possible that a complete Stormwater Report may not include information on some of the subjects specified in the Checklist. If it is determined that a specific item does not apply to the project under review, please note that the item is not applicable (N.A.) and provide the reasons for that determination.

A complete checklist must include the Certification set forth below signed by the Registered Professional Engineer who prepared the Stormwater Report.

Registered Professional Engineer's Certification

I have reviewed the Stormwater Report, including the soil evaluation, computations, Long-term Pollution Prevention Plan, the Construction Period Erosion and Sedimentation Control Plan (if included), the Longterm Post-Construction Operation and Maintenance Plan, the Illicit Discharge Compliance Statement (if included) and the plans showing the stormwater management system, and have determined that they have been prepared in accordance with the requirements of the Stormwater Management Standards as further elaborated by the Massachusetts Stormwater Handbook. I have also determined that the information presented in the Stormwater Checklist is accurate and that the information presented in the Stormwater Report accurately reflects conditions at the site as of the date of this permit application.

Registered Professional Engineer Block and Signature

5/14/24 Signature and Date

Checklist

Project Type: Is the application for new development, redevelopment, or a mix of new and redevelopment?

New development

Mix of New Development and Redevelopment

Checklist (continued)

LID Measures: Stormwater Standards require LID measures to be considered. Document what environmentally sensitive design and LID Techniques were considered during the planning and design of the project:

- No disturbance to any Wetland Resource Areas
- Site Design Practices (e.g. clustered development, reduced frontage setbacks)
- Reduced Impervious Area (Redevelopment Only)
- Minimizing disturbance to existing trees and shrubs
- LID Site Design Credit Requested:
 - Credit 1
 - Credit 2
 - Credit 3
- Use of "country drainage" versus curb and gutter conveyance and pipe
- Bioretention Cells (includes Rain Gardens)
- Constructed Stormwater Wetlands (includes Gravel Wetlands designs)
- Treebox Filter
- Water Quality Swale
- Grass Channel
- Green Roof
- Other (describe):

Standard 1: No New Untreated Discharges

- No new untreated discharges
- Outlets have been designed so there is no erosion or scour to wetlands and waters of the Commonwealth
- Supporting calculations specified in Volume 3 of the Massachusetts Stormwater Handbook included.

Checklist (continued)

Standard 2: Peak Rate Attenuation

- Standard 2 waiver requested because the project is located in land subject to coastal storm flowage and stormwater discharge is to a wetland subject to coastal flooding.
- Evaluation provided to determine whether off-site flooding increases during the 100-year 24-hour storm.

Calculations provided to show that post-development peak discharge rates do not exceed predevelopment rates for the 2-year and 10-year 24-hour storms. If evaluation shows that off-site flooding increases during the 100-year 24-hour storm, calculations are also provided to show that post-development peak discharge rates do not exceed pre-development rates for the 100-year 24hour storm.

Standard 3: Recharge

Soil Analysis provided.

- Required Recharge Volume calculation provided.
- Required Recharge volume reduced through use of the LID site Design Credits.
- Sizing the infiltration, BMPs is based on the following method: Check the method used.

🖂 Static

Dynamic Field¹

Runoff from all impervious areas at the site discharging to the infiltration BMP.

Simple Dynamic

Runoff from all impervious areas at the site is *not* discharging to the infiltration BMP and calculations are provided showing that the drainage area contributing runoff to the infiltration BMPs is sufficient to generate the required recharge volume.

\boxtimes	Recharge BMPs have	been sized to infiltrate	the Required F	Recharge Volume.
-------------	--------------------	--------------------------	----------------	------------------

Recharge BMPs have been sized to infiltrate the Required Recharge Volume only to the maximum
extent practicable for the following reason:

- Site is comprised solely of C and D soils and/or bedrock at the land surface
- M.G.L. c. 21E sites pursuant to 310 CMR 40.0000
- Solid Waste Landfill pursuant to 310 CMR 19.000
- Project is otherwise subject to Stormwater Management Standards only to the maximum extent practicable.
- \boxtimes Calculations showing that the infiltration BMPs will drain in 72 hours are provided.

Property includes a M.G.L. c. 21E site or a solid waste landfill and a mounding analysis is included.

¹ 80% TSS removal is required prior to discharge to infiltration BMP if Dynamic Field method is used.

Checklist (continued)

Standard 3: Recharge (continued)

The infiltration BMP is used to attenuate peak flows during storms greater than or equal to the 10year 24-hour storm and separation to seasonal high groundwater is less than 4 feet and a mounding analysis is provided.

Documentation is provided showing that infiltration BMPs do not adversely impact nearby wetland resource areas.

Standard 4: Water Quality

The Long-Term Pollution Prevention Plan typically includes the following:

- Good housekeeping practices;
- Provisions for storing materials and waste products inside or under cover;
- Vehicle washing controls;
- Requirements for routine inspections and maintenance of stormwater BMPs;
- Spill prevention and response plans;
- Provisions for maintenance of lawns, gardens, and other landscaped areas;
- Requirements for storage and use of fertilizers, herbicides, and pesticides;
- Pet waste management provisions;
- Provisions for operation and management of septic systems;
- Provisions for solid waste management;
- Snow disposal and plowing plans relative to Wetland Resource Areas;
- Winter Road Salt and/or Sand Use and Storage restrictions;
- Street sweeping schedules;
- Provisions for prevention of illicit discharges to the stormwater management system;
- Documentation that Stormwater BMPs are designed to provide for shutdown and containment in the event of a spill or discharges to or near critical areas or from LUHPPL;
- Training for staff or personnel involved with implementing Long-Term Pollution Prevention Plan;
- List of Emergency contacts for implementing Long-Term Pollution Prevention Plan.
- A Long-Term Pollution Prevention Plan is attached to Stormwater Report and is included as an attachment to the Wetlands Notice of Intent.
- Treatment BMPs subject to the 44% TSS removal pretreatment requirement and the one inch rule for calculating the water quality volume are included, and discharge:
 - is within the Zone II or Interim Wellhead Protection Area
 - is near or to other critical areas
 - is within soils with a rapid infiltration rate (greater than 2.4 inches per hour)
 - involves runoff from land uses with higher potential pollutant loads.
- The Required Water Quality Volume is reduced through use of the LID site Design Credits.
- Calculations documenting that the treatment train meets the 80% TSS removal requirement and, if applicable, the 44% TSS removal pretreatment requirement, are provided.

Checklist (c	continued)
--------------	------------

Standard 4: Water Quality (continued)

- The BMP is sized (and calculations provided) based on:
 - The 1/2" or 1" Water Quality Volume or
 - The equivalent flow rate associated with the Water Quality Volume and documentation is provided showing that the BMP treats the required water quality volume.
- The applicant proposes to use proprietary BMPs, and documentation supporting use of proprietary BMP and proposed TSS removal rate is provided. This documentation may be in the form of the propriety BMP checklist found in Volume 2, Chapter 4 of the Massachusetts Stormwater Handbook and submitting copies of the TARP Report, STEP Report, and/or other third party studies verifying performance of the proprietary BMPs.
- A TMDL exists that indicates a need to reduce pollutants other than TSS and documentation showing that the BMPs selected are consistent with the TMDL is provided.

Standard 5: Land Uses With Higher Potential Pollutant Loads (LUHPPLs)

- The NPDES Multi-Sector General Permit covers the land use and the Stormwater Pollution Prevention Plan (SWPPP) has been included with the Stormwater Report.
- The NPDES Multi-Sector General Permit covers the land use and the SWPPP will be submitted **prior to** the discharge of stormwater to the post-construction stormwater BMPs.
- The NPDES Multi-Sector General Permit does *not* cover the land use.
- LUHPPLs are located at the site and industry specific source control and pollution prevention measures have been proposed to reduce or eliminate the exposure of LUHPPLs to rain, snow, snow melt and runoff, and been included in the long term Pollution Prevention Plan.
- All exposure has been eliminated.
- All exposure has *not* been eliminated and all BMPs selected are on MassDEP LUHPPL list.
- The LUHPPL has the potential to generate runoff with moderate to higher concentrations of oil and grease (e.g. all parking lots with >1000 vehicle trips per day) and the treatment train includes an oil grit separator, a filtering bioretention area, a sand filter or equivalent.

Standard 6: Critical Areas

- The discharge is near or to a critical area and the treatment train includes only BMPs that MassDEP has approved for stormwater discharges to or near that particular class of critical area.
- Critical areas and BMPs are identified in the Stormwater Report.

Checklist (continued)

Standard 7: Redevelopments and Other Projects Subject to the Standards only to the maximum extent practicable

The project is subject to the Stormwater Management Standards only to the maximum Extent Practicable as a:

Limited Project

Small Residential Projects: 5-9 single family houses or 5-9 units in a multi-family development provided there is no discharge that may potentially affect a critical area.

Small Residential Projects: 2-4 single family houses or 2-4 units in a multi-family development with a discharge to a critical area

- Marina and/or boatyard provided the hull painting, service and maintenance areas are protected from exposure to rain, snow, snow melt and runoff
- Bike Path and/or Foot Path
- Redevelopment Project
- Redevelopment portion of mix of new and redevelopment.
- Certain standards are not fully met (Standard No. 1, 8, 9, and 10 must always be fully met) and an explanation of why these standards are not met is contained in the Stormwater Report.

☐ The project involves redevelopment and a description of all measures that have been taken to improve existing conditions is provided in the Stormwater Report. The redevelopment checklist found in Volume 2 Chapter 3 of the Massachusetts Stormwater Handbook may be used to document that the proposed stormwater management system (a) complies with Standards 2, 3 and the pretreatment and structural BMP requirements of Standards 4-6 to the maximum extent practicable and (b) improves existing conditions.

Standard 8: Construction Period Pollution Prevention and Erosion and Sedimentation Control

A Construction Period Pollution Prevention and Erosion and Sedimentation Control Plan must include the following information:

- Narrative;
- Construction Period Operation and Maintenance Plan;
- Names of Persons or Entity Responsible for Plan Compliance;
- Construction Period Pollution Prevention Measures;
- Erosion and Sedimentation Control Plan Drawings;
- Detail drawings and specifications for erosion control BMPs, including sizing calculations;
- Vegetation Planning;
- Site Development Plan;
- Construction Sequencing Plan;
- Sequencing of Erosion and Sedimentation Controls;
- Operation and Maintenance of Erosion and Sedimentation Controls;
- Inspection Schedule;
- Maintenance Schedule;
- Inspection and Maintenance Log Form.

A Construction Period Pollution Prevention and Erosion and Sedimentation Control Plan containing the information set forth above has been included in the Stormwater Report.

Checklist (continued)

Standard 8: Construction Period Pollution Prevention and Erosion and Sedimentation Control (continued)

- The project is highly complex and information is included in the Stormwater Report that explains why it is not possible to submit the Construction Period Pollution Prevention and Erosion and Sedimentation Control Plan with the application. A Construction Period Pollution Prevention and Erosion and Sedimentation Control has *not* been included in the Stormwater Report but will be submitted *before* land disturbance begins.
- The project is *not* covered by a NPDES Construction General Permit.
- The project is covered by a NPDES Construction General Permit and a copy of the SWPPP is in the Stormwater Report.
- The project is covered by a NPDES Construction General Permit but no SWPPP been submitted. The SWPPP will be submitted BEFORE land disturbance begins.

Standard 9: Operation and Maintenance Plan

- The Post Construction Operation and Maintenance Plan is included in the Stormwater Report and includes the following information:
 - Name of the stormwater management system owners;
 - Party responsible for operation and maintenance;
 - Schedule for implementation of routine and non-routine maintenance tasks;
 - Plan showing the location of all stormwater BMPs maintenance access areas;
 - Description and delineation of public safety features;
 - Estimated operation and maintenance budget; and
 - Operation and Maintenance Log Form.
- The responsible party is **not** the owner of the parcel where the BMP is located and the Stormwater Report includes the following submissions:
 - A copy of the legal instrument (deed, homeowner's association, utility trust or other legal entity) that establishes the terms of and legal responsibility for the operation and maintenance of the project site stormwater BMPs;
 - A plan and easement deed that allows site access for the legal entity to operate and maintain BMP functions.

Standard 10: Prohibition of Illicit Discharges

- The Long-Term Pollution Prevention Plan includes measures to prevent illicit discharges;
- An Illicit Discharge Compliance Statement is attached;
- NO Illicit Discharge Compliance Statement is attached but will be submitted *prior to* the discharge of any stormwater to post-construction BMPs.

					RE CORF						TEST HOLE NO.	TP-1
	EN	8 IGINEE		TONE VA	LLEY PLAC		COLN, ***		ISLAND CONSULTANTS		SHEET 1 OF	⁼ 10
Property C	Owner:	Town	of Nortl	hborough								
Project:		North	borough	n Fire Stat	ion				Contracto	or: Northbo	rough DPW	
Property L	ocation:	65 W	Main St	t Northbor	ough MA				Excavato	r: Northbo	rough DPW	
Date of Te	est Hole:	2/21/2	2024	7:45am								
Soil Evalu	ator: <u>C. V</u>	Webbe	er				_	State /	Date of Exam:	MA		
Weather:	Sunny						- :	Shaded	: Yes 🗸	No 🗌		
					SAMF	PLE D	ESCR	IPTION				
		Horizon	Boundaries	Soil	Colors	Re-	Dox Desc	ription				Percent Gravel
Horizon	Depth	Dist	Торо	Matrix	Re-Dox Features	Ab.	S.	Con.	Texture	Structure	Consistence	Cobbles Stone
Fill	0-38"											
C1	38-71"			10yr 6/4	10yr 6/8 (C)				Fine Sandy Loam	Massive	Friable	15% G 10% C 5% S
							I			I	1	
Soil Class:	Merrimac	/ Paxtor	n fsl				Total [Depth of	Fest Hole:	71"		
Depth to Gro or Seepage:			N/A					to Imperviting Laye		71" (boulders)		
Estimated S	easonal Hi	gh					Surfac	e Elevati	on of Test Pit			
Water Table	:		298.17				_(appro	ximate):		303		
COMMENTS												
Brick @ 36 Heavy red		at 13"										
										TEST H	OLE NO.	TP-1

B BLACKSTONE VALLEY PLACE, INVOEIN, RHODE ISLAND SHEET 2 OF 10 Property Covner: Town of Northborough Consultants SHEET 2 OF 10 Property Covner: Town of Northborough Fire Station Contractor: Northborough DPW Property Location: Station Contractor: Northborough DPW Date of Test Hole: Station Excavator: Northborough DPW Soli Evaluator: C. Webber State / Date of Exam:: MA Weather: Sum / State / Date of Exam:: MA SAMPLE DESCRIPTION Metric Examine: Northborough Mire State												TEST HOLE NO.	TP-2
Project: Northborough Fire Station Contractor: Northborough DPW Property Location: 55 W Main St Northborough MA Excavator: Northborough DPW Date of Test Hole: 2/21/2024 8:30am State / Date of Exam: MA Weather: Sumy State / Date of Exam: MA State / Date of Exam: MA Weather: Sumy State / Date of Exam: MA State / Date of Exam: MA Muitor Deeft Interventment State / Date of Exam: MA State / Date of Exam: MA Fill 0-35* Image State / Date of Exam: Ma State / Date of Exam: MA Fill 0-35* Image State / Date of Exam: Massive Friable 10% G G1 35-50* Image Image Image Image Frie Sandy Leam Massive Friable 10% G G2 50-67* Image <		EN										SHEET 2 OF	[:] 10
Properly Location: 65 W Main St Northborough MA Excavator: Northborough DPW Date of Test Hole: 221/2024 8:30am State / Date of Exam: MA Soil Evaluator: C. Webber State / Date of Exam: MA MA Wether: Sum / Date of Exam: MA MA MA MA Shaded: Yes: No Continue Macro display Shaded: Yes: Sauare Continue Macro display Shade: Total Pearing Sauare Continue Macro display Side: Sauare Sauare <th< td=""><td>Property C</td><td>Owner:</td><td>Town</td><td>of North</td><td>nborough</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>	Property C	Owner:	Town	of North	nborough								
Date of Test Hole: 221/2024 8:30am State / Date of Exam: MA Soli Evaluator: C. Webber State / Date of Exam: MA State / Date of Exam: No	Project:		North	borough	Fire Stati	ion				Contracto	r: Northbo	rough DPW	
State / Date of Exam: MA Weather: Sunny State / Date of Exam: MA Shaded: Yes No State / Date of Exam: MA State / Date of Exam: Total Date of Total Date of Exam: Total Date of Total Da	Property L	ocation:	65 W	Main St	Northbor	ough MA				Excavato	r: Northbo	rough DPW	
Weather: Sumy Shaded: Yes No SAMPLE DESCRIPTION Hetcon Daph Hetcon Boundaries Sol Class Re-Dax Description Todare Structure Correlations Portant Oracle Fill 0.35* 0 0 100r 6/3 0	Date of Te	est Hole:	2/21/2	2024	8:30am								
SAMPLE DESCRIPTION Sample DESCRIPTION Herzen Inequilibrium Sectors Neclosi Exercise Sectors Neclosi Exercise Sectors Consistence Present Exercise Fill 0.35" Image	Soil Evalu	ator: <u>C.</u>	Webbe	er				_	State /	Date of Exam:	MA		
Herron Indian Source Techox Techox Toture Structure Structure Consistence Percent Game Fill 0.35° I I I I I I I I Image: Structure Structure Structure Structure Consistence Percent Game Percent Game G1 3.5-50° Image: Structure Percent Game Pe	Weather:	Sunny						;	Shaded	: Yes 🗸	No 🗌		
Herron Indian Toto Metrix Telox Telox Toture Toture Structure Consistence Percet Grave Codes Blave Fill 0.35° I							-						
Hotom Date Topo Mark Pachage Ak S. Con. Totation Structure Consistence Percent Gaset Cables Some Fill 0.35* 2 2 10yr 6/3 2 2 2 1 10yr 6/3 2 2 5 5 10yr 7/1 2 2 5 5 10yr 7/1 2 2 5 <td< td=""><td></td><td></td><td></td><td></td><td></td><td>SAM</td><td>PLE D</td><td>ESCR</td><td>IPTION</td><td>l</td><td></td><td></td><td></td></td<>						SAM	PLE D	ESCR	IPTION	l			
Indication Legan Dat Topo Mark Preduce Ab 6 Con Feature Structure Consistence Con Consistence Con			Horizon	Boundaries	Soil C	Colors	Re-	Dox Desc	ription				
C1 35-50° I 10yr 6/3 I I I Fine Sandy Loam Massive Friable 15% 6 10% C 5% S C2 50-67° I 10yr 7/1 I I I Fine Sandy Loam Massive Friable 15% 6 10% C 5% S C2 50-67° I	Horizon	Depth	Dist	Торо	Matrix		Ab.	S.	Con.	Texture	Structure	Consistence	
C1 35-50" 10yr 6/3 Image: Fine Sandy Loam Massive Friable 10% C C2 50-67" 10yr 7/1 Image: Fine Sandy Loam Massive Friable 10% C C2 50-67" 10yr 7/1 Image: Fine Sandy Loam Massive Friable 10% C C1 Image: Fine Sandy Loam Massive Friable 10% C Image: Fine Sandy Loam Image: Fine Sandy Loam Massive Friable 10% C Image: Fine Sandy Loam Image	Fill	0-35"											
C2 50-67" 10yr 7/1 Fine Sandy Loam Massive Friable 10% C 5% S Image: Solid Class: Image: So	C1	35-50"			10yr 6/3					Fine Sandy Loam	Massive	Friable	10% C
Depth to Groundwater or Seepage: 67" Or Limiting Layer: N/A Estimated Seasonal High Water Table: 300.42 (approximate): 306 COMMENTS: Clay pipe @39", broken Various fill material down to 35", fly ash as well Ponding @ 67"	C2	50-67"			10yr 7/1					Fine Sandy Loam	Massive	Friable	10% C
Depth to Groundwater or Seepage: 67" Or Limiting Layer: N/A Estimated Seasonal High Water Table: 300.42 (approximate): 306 COMMENTS: Clay pipe @39", broken Various fill material down to 35", fly ash as well Ponding @ 67"													
Depth to Groundwater or Seepage: 67" Or Limiting Layer: N/A Estimated Seasonal High Water Table: 300.42 (approximate): 306 COMMENTS: Clay pipe @39", broken Various fill material down to 35", fly ash as well Ponding @ 67"													
Depth to Groundwater or Seepage: 67" Or Limiting Layer: N/A Estimated Seasonal High Water Table: 300.42 (approximate): 306 COMMENTS: Clay pipe @39", broken Various fill material down to 35", fly ash as well Ponding @ 67"													
Depth to Groundwater or Seepage: 67" Or Limiting Layer: N/A Estimated Seasonal High Water Table: 300.42 (approximate): 306 COMMENTS: Clay pipe @39", broken Various fill material down to 35", fly ash as well Ponding @ 67"													
Depth to Groundwater or Seepage: 67" Or Limiting Layer: N/A Estimated Seasonal High Water Table: 300.42 (approximate): 306 COMMENTS: Clay pipe @39", broken Various fill material down to 35", fly ash as well Ponding @ 67"													
Depth to Groundwater or Seepage: 67" Or Limiting Layer: N/A Estimated Seasonal High Water Table: 300.42 (approximate): 306 COMMENTS: Clay pipe @39", broken Various fill material down to 35", fly ash as well Ponding @ 67"													
Depth to Groundwater or Seepage: 67" Or Limiting Layer: N/A Estimated Seasonal High Water Table: 300.42 (approximate): 306 COMMENTS: Clay pipe @39", broken Various fill material down to 35", fly ash as well Ponding @ 67"													
Depth to Groundwater or Seepage: 67" Or Limiting Layer: N/A Estimated Seasonal High Water Table: 300.42 (approximate): 306 COMMENTS: Clay pipe @39", broken Various fill material down to 35", fly ash as well Ponding @ 67"	Soil Class:	Merrimac	/ Paxtor	n fsl			I	Total [Depth of	rest Hole:	67"	1	
Water Table: 300.42 (approximate): 306 COMMENTS: Clay pipe @39", broken Various fill material down to 35", fly ash as well Ponding @ 67"	Depth to Gro or Seepage:	oundwater						Depth or Lim	to Imperviting Laye	vious er:			
Clay pipe @39", broken Various fill material down to 35", fly ash as well Ponding @ 67"			yıı	300.42							306		
Various fill material down to 35", fly ash as well Ponding @ 67"	COMMENTS	8:											
	Various fill	material d		5", fly ash	as well								
· · · · · · · · · · · · · · · · · · ·		901									TEST H	OLE NO.	TP-2

				PAR		PORA		N			TEST HOLE NO.	TP-3
		8 IGINEE		STONE VAL	LEY PLAC		COLN, ***		E ISLAND CONSULTANTS		SHEET 3 OF	- 10
Property (hborough	FLAININ	_1\0			SONSOLIANIS			10
Project:	JWHEI.			n Fire Stati	on				Contracto	r: Northbo	orough DPW	
-	ocation.			t Northbord					Excavator		brough DPW	
Date of Te					bugit till t				Executate			
Soil Evalu								State /	Date of Exam:	MA		
Weather:							-	Shaded		No 🗌		
						_						
					SAM	PLE D	ESCR	IPTION	I			
		Horizon	Boundaries	Soil C	Colors	Re-	Dox Desc	ription				
Horizon	Depth	Dist	Торо	Matrix	Re-Dox Features	Ab.	S.	Con.	Texture	Structure	Consistence	Percent Gravel Cobbles Stone
Ар	0-12"			10yr 4/2					Sandy Loam	Massive	Friable	5% G 5% C 0% S
Bw	12-28"			10yr 5/6					Sandy Loam	Massive	Friable	10% G 5% C 0% S
C1	28-84"			10 yr 5/3					Rocky Sandy Loam	Massive	Friable	15% G 10% C 5% S
C2	84-120"			10 yr 7/2					Loamy Sand	Massive	Friable	5% G 5% C 0% S
Soil Class: Depth to Gro or Seepage: Estimated S Water Table	easonal Hi		n fsl <u>N/A</u> 301	· · · · · · · · · · · · · · · · · · ·		·	Depth or Lim Surfac	to Imper iting Laye	vious er: on of Test Pit	120" N/A 311	· 	
COMMENTS (none)	S:											
										TEST F	IOLE NO.	TP-3

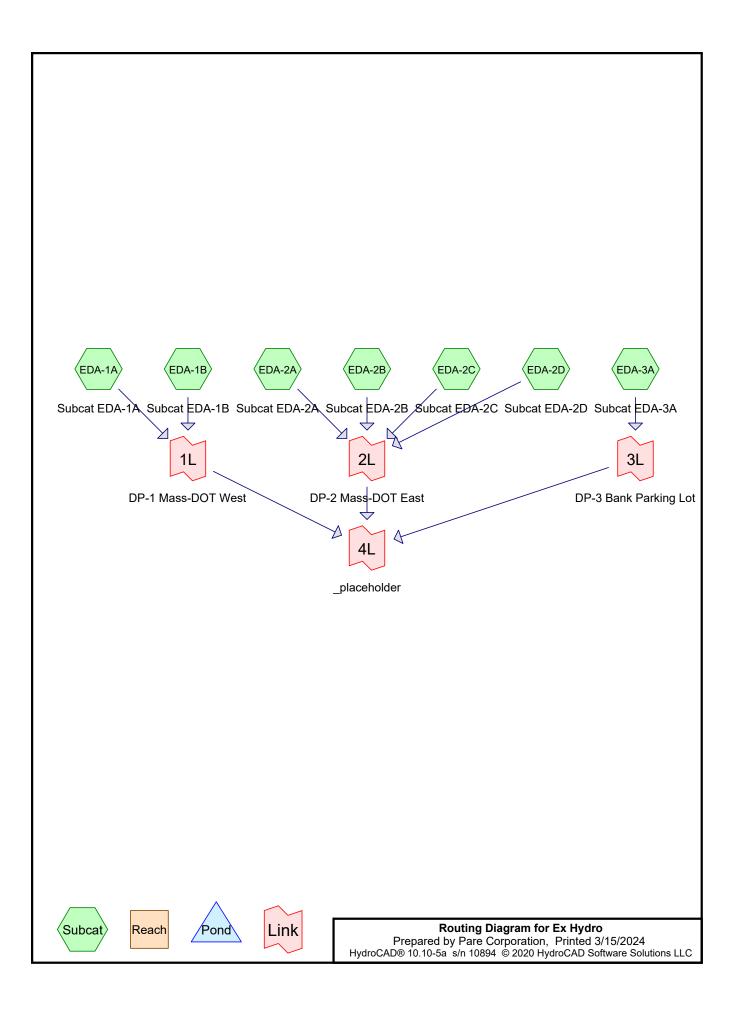
					RE CORF						TEST HOLE NO.	TP-4
	EN	8 IGINEE		TONE VAI	LEY PLAC		COLN, ***		ISLAND		SHEET 4 OF	= 10
Property C	Owner:	Town	of Nortl	nborough								
Project:		North	borough	Fire Stat	ion				Contracto	r: Northb	orough DPW	
Property L	ocation:	65 W	Main St	t Northbor	ough MA				Excavato	r: Northb	orough DPW	
Date of Te	est Hole:	2/21/2	2024 1	:15pm								
Soil Evalu	ator: C.	Webbe	er					State /	Date of Exam:	MA		
Weather:	Sunny						;	Shaded	: Yes 🗸	No 🗌		
	_											
					SAM	PLE D	ESCR		l			
		Horizon	Boundaries	Soil	Colors	Re-	Dox Desc	ription				
Horizon	Depth	Dist	Торо	Matrix	Re-Dox Features	Ab.	S.	Con.	Texture	Structure	Consistence	Percent Gravel Cobbles Stone
Fill	0-55"			10yr 5/3								
С	55-72"			10yr 6/4	10yr 5/8 (C)				Find Sandy Loam	Massive	Friable	10% G 5% C 0% S
Depth to Gro or Seepage: Estimated So Water Table	easonal Hi :		<u>72" (pone</u> 304.08	ding)			Depth or Lim Surfac	to Imperviting Laye	vious er: on of Test Pit	72" N/A 309.5		-
COMMENTS Very bould Ponding @ Redox @ 6	lery throug	hout. Bri	ick, concre	ete throughc	out fill layer							
										TEST	HOLE NO.	TP-4

HorizonDepthDistTopoMatrixRe-Dox FeaturesAb.S.Con.TextureStructureStructureConsistenceCobblesAp0-13"10yr 4/210yr 4/2-Image: ConsistenceImage: ConsistenceImage: ConsistenceImage: ConsistenceCobblesC13-68"10yr 5/310yr 5/6 (C) 10yr 5/2Image: ConsistenceImage: ConsistenceImage: ConsistenceCobblesC13-68"Image: Consistence10yr 5/6 (C) 10yr 5/2Image: ConsistenceImage: ConsistenceCobblesC13-68"Image: Consistence10yr 5/6 (C) 10yr 5/2Image: ConsistenceImage: ConsistenceCobblesC13-68"Image: Consistence10yr 5/6 (C) 10yr 5/2Image: ConsistenceImage: ConsistenceCobblesC13-68"Image: Consistence10yr 5/2Image: ConsistenceConsistenceCobblesC13-68"Image: Consistence10yr 5/2Image: ConsistenceConsistenceCobblesC13-68"Image: Consistence10yr 5/2Image: ConsistenceConsistenceConsistenceC13-68"Image: Consistence10yr 5/2Image: ConsistenceSandy LoamMassiveFriableSimeC10yr 5/2Image: Consistence10yr 5/2Image: ConsistenceConsistenceConsistenceConsistence	TP-5	TEST HOLE NO.						RE CORI					
Project: Northborough Fire Station Contractor: Northborough DPW Property Location: 65 W Main St Northborough MA Excavator: Northborough DPW Date of Test Hole: 2/21/2024 1:45pm Soil Evaluator: C. Webber State / Date of Exam: MA Weather: Sunny State / Date of Exam: MA Soil Evaluator: C. Webber State / Date of Exam: MA Weather: Sunny State / Date of Exam: MA No SAMPLE DESCRIPTION Horizon Boundaries Soil Colors Re-Dox Description Horizon Depth Dist Topo Matrix Re-Dox Ab. S. Con. Texture Structure Consistence Percent Ap 0-13" 10yr 5/3 10yr 5/6 (C) Sandy Loam Massive Friable 5% C 13-68" 10yr 5/3 10yr 5/6 (C) Sandy Loam Massive Friable 5%	- 10	SHEET 5 OF										EN	
Property Location: 65 W Main St Northborough MA Excavator: Northborough DPW Date of Test Hole: 2/21/2024 1:45pm Soil Evaluator: C. Webber State / Date of Exam: MA Weather: Sunny Shaded: Yes v No SAMPLE DESCRIPTION Horizon Horizon Boundaries Soil Colors Re-Dox Description Texture Structure Consistence Percent Cobbles Ap 0-13" 10yr 4/2 Ab. S. Con. Texture Sandy Loam Massive Friable 5% 0% C 13-68" 10yr 5/3 10yr 5/2 Sandy Loam Massive Friable 5%									nborough	of North	Town	Owner:	Property C
Date of Test Hole: 2/21/2024 1:45pm Soil Evaluator: C. Webber State / Date of Exam: MA Weather: Sunny State / Date of Exam: MA Shaded: Yes V No Veather: Sunny State / Date of Exam: MA Shaded: Yes V No Veather: Sunny Soil Colors Re-Dox Description Texture Structure Consistence Percent Cobbles Matrix Re-Dox Description Texture Structure Consistence Percent Cobbles Ap 0-13" 10yr 4/2 Soil Colors Re-Dox Description Texture Structure Consistence Percent Cobbles Ap 0-13" 10yr 4/2 Sandy Loam Massive Friable 5% Consistence Percent Cobbles Consistence Percent Cobbles Col		rough DPW	or: Northbor	Contracto				ion	n Fire Stat	borough	North		Project:
Soil Evaluator: C. Webber State / Date of Exam: MA Weather: Sunny No No No No		rough DPW	r: Northbor	Excavato				ough MA	Northbor	Main St	65 W	ocation:	Property L
Weather: Sunny Shaded: Yes No No No SAMPLE DESCRIPTION Sample Description Horizon Depth Horizon Boundaries Soil Colors Re-Dox Description Texture Structure Consistence Percent Cobbles Ap 0-13" Ioyr 4/2 Ioyr 5/6 (C) Sandy Loam Massive Friable 5% 0% C 13-68" 10yr 5/3 10yr 5/2 Sandy Loam Massive Friable 5% 5%									:45pm	2024 1:	2/21/2	est Hole:	Date of Te
BAMPLE DESCRIPTION Sample Description Horizon Depth Horizon Boundaries Soil Colors Re-Dox Description Horizon Depth Horizon Boundaries Soil Colors Re-Dox Description Texture Structure Consistence Percent Cobbles Ap 0-13" Ioyr 4/2 Ioyr 4/2 Ioyr 5/6 (C) Ioyr 5/6 (C) Sandy Loam Massive Friable 10% 5% 0% C 13-68" Ioyr 5/3 10yr 5/6 (C) Ioyr 5/2 Sandy Loam Massive Friable 10% 5%			MA	Date of Exam:	State /	_				r	Webbe	ator: <u>C. V</u>	Soil Evalu
Horizon BoundariesSoil ColorsRe-Dox DescriptionHorizonDepthHorizonTopoMatrixRe-Dox FeaturesAb.S.Con.TextureStructureConsistenceConsistencePercent CoblesAp0-13"0-13"10yr 4/210yr 4/2Image: Construction of the constr			No 🗌	Yes 🔽	Shaded	_ :						Sunny	Weather:
Horizon BoundariesSoil ColorsRe-Dox DescriptionHorizonDepthHorizonTopoMatrixRe-Dox FeaturesAb.S.Con.TextureStructureConsistenceConsistencePercent CoblesAp0-13"0-13"10yr 4/210yr 4/2Image: Construction of the constr													
HorizonDepthTopoMatrixRe-Dox FeaturesAb.S.Con.TextureStructureConsistencePercent CobblesAp0-13"					IPTION	ESCR	PLE D	SAM					
HorizonDepthDistTopoMatrixRe-Dox FeaturesAb.S.Con.TextureStructureStructureConsistenceCobblesAp0-13"10yr 4/2Sandy LoamMassiveFriable10% 5%C13-68"10yr 5/6 (C) 10yr 5/2Sandy LoamMassiveFriable10% 5%					ription	Dox Desc	Re-	Colors	Soil (Boundaries	Horizon		
Ap 0-13" 10yr 4/2 Sandy Loam Massive Friable 5% 0% C 13-68" 10yr 5/6 (C) 10yr 5/3 10yr 5/6 (C) 10yr 5/2 Sandy Loam Massive Friable 10% 5%	Percent Gravel Cobbles Stone	Consistence	Structure	Texture	Con.	S.	Ab.		Matrix	Торо	Dist	Depth	Horizon
C 13-68" 10yr 5/3 10yr 5/2 Sandy Loam Massive Friable 5%	10% G 5% C 0% S	Friable	Massive	Sandy Loam					10yr 4/2			0-13"	Ар
(D) 0%	10% G 5% C 0% S	Friable	Massive	Sandy Loam					10yr 5/3			13-68"	С
Soil Class: Merrimac / Paxton fsl Total Depth of Test Hole: 68" Depth to Groundwater Depth to Impervious 0r Limiting Layer: N/A or Seepage: N/A or Limiting Layer: N/A Estimated Seasonal High Surface Elevation of Test Pit 313.33 Water Table: 313.33 (approximate): 319		L	N/A	ious r:	to Imperv iting Laye e Elevatio	Depth or Lim Surfac		I		N/A		undwater easonal Hi	Depth to Gro or Seepage: Estimated Se
COMMENTS: Redox @ 21", inconsistant TEST HOLE NO. TP-5	TP-5	OLE NO.	TEST H								sistant		

											TEST HOLE NO.	TP-6
	EN	8 IGINEE		TONE VAL	LEY PLAC		COLN, ***		ISLAND ONSULTANTS		SHEET 6 OF	⁻ 10
Property C	Owner:	Town	of Nort	hborough							•	
Project:		North	borougł	n Fire Stati	ion				Contracto	or: Northbo	rough DPW	
Property L	ocation:	65 W	Main S	t Northbor	ough MA				Excavato	r: Northbo	rough DPW	
Date of Te	est Hole:	2/21/2	2024 1	2:45pm								
Soil Evalu	ator: <u>C.</u>	Webbe	er				_	State /	Date of Exam:	MA		
Weather:	Sunny							Shaded	: Yes 🗸	No 🗌		
						-						
					SAM	PLE D	ESCR	IPTION				
		Horizon	Boundaries	Soil (Colors	Re-	Dox Desc	ription				Percent Gravel
Horizon	Depth	Dist	Торо	Matrix	Re-Dox Features	Ab.	S.	Con.	Texture	Structure	Consistence	Cobbles Stone
Ар	0-14"			10yr 2/2					Sandy Loam	Massive	Friable	10% G 10% C 10% S
с	14-45"			10yr 5/4					Sandy Loam	Massive	Friable	10% G 10% C 10% S
		1										
Depth to Gro or Seepage:			1 fsl 45"				 Depth _or Lim	to Imperviting Laye	er:	45" N/A		
Estimated So Water Table		gh	306.75					e Elevatio ximate):	on of Test Pit	310.5		
COMMENTS Ponding @		dy weep	ina									
r onding @	y to , sida	ay weep	ing									
										TEST H	OLE NO.	TP-6

				PAF		PORA		N			TEST HOLE NO.	TP-7
	EN	8 IGINEE		TONE VAI	LLEY PLAC PLANNE		COLN, ***		ISLAND ONSULTANTS		SHEET 7 OF	- 10
Property (nborough								
Project:				n Fire Stat	ion				Contracto	or: Northbo	rough DPW	
Property L	_ocation:								Excavato		orough DPW	
Date of Te					-						-	
Soil Evalu	ator: <u>C</u> . V	Webbe	er					State /	Date of Exam:	MA		
Weather:	Sunny							Shaded	Yes 🗸	No 🗌		
					SAMF	PLE DI	ESCR	IPTION				
		Horizon	Boundaries	Soil	Colors	Re-	Dox Desc	ription				
Horizon	Depth	Dist	Торо	Matrix	Re-Dox Features	Ab.	S.	Con.	Texture	Structure	Consistence	Percent Gravel Cobbles Stone
Ар	0-10"			10yr 4/2					Sandy Loam	Massive	Friable	10% G 5% C 5% S
C1	10-25"			10yr 2/2					Sandy Loam	Massive	Friable	10% G 5% C 5% S
C2	25-53"			10yr 6/4	10yr 5/8 (c) 10yr 7/1 (D)				Sandy Loam	Massive	Friable	10% G 5% C 5% S
Depth to Gro or Seepage: Estimated S Water Table	easonal Hi ::		55" 305		I		Depth or Lim Surfac	to Imperv iting Laye		55" N/A 308	l	- - -
COMMENTS Redox @ 3 Weeping (36", consis	tant										
										TEST H	IOLE NO.	TP-7

				PA	RE CORF	PORA		N			TEST HOLE NO.	TP-8
	FN	8 IGINEE		TONE VA	LLEY PLAC PLANNE		COLN, ***		ISLAND		SHEET 8 OF	- 10
Property C				nborough								10
Project:				Fire Stat	ion				Contracto	r: Northbo	rough DPW	
Property L	ocation:								Excavato		rough DPW	
Date of Te												
Soil Evalu								State /	Date of Exam:	MA		
Weather:							;	Shaded	: Yes 🗸	No 🗌		
					SAMF	PLE D	ESCR	IPTION				
		Horizon	Boundaries	Soil	Colors	Re-	Dox Desc	ription				
Horizon	Depth	Dist	Торо	Matrix	Re-Dox Features	Ab.	S.	Con.	Texture	Structure	Consistence	Percent Gravel Cobbles Stone
Ар	0-10"			10yr 3/2					Fine Sandy Loam	Massive	Friable	10% G 5% C 5% S
Bw	10-23"			10yr 5/4					Fine Sandy Loam	Massive	Friable	10% G 5% C 5% S
C1	23-37"			10yr 2/2					Fine Sandy Loam	Massive	Friable	5% G 0% C 0% S
C2	37-69"			10yr 6/4	10yr 5/6 (C)				Fine Sandy Loam	Massive	Friable	5% G 0% C 0% S
Soil Class: Depth to Gro or Seepage: Estimated So Water Table	easonal Hi		55" 300.42		·		Depth or Lim Surfac	to Imperviting Laye	vious er: on of Test Pit	69" N/A 305	·	
COMMENTS Weeping (Redox @ 4		istant								TEST H	OLE NO.	TP-8


		8	BI ACKS						ISI AND		TEST HOLE NO.	TP-9
	EN	IGINË		***	PLANNE		***		CONSULTANTS		SHEET 9 OF	- 10
Property C	Owner:	Town	of North	nborough								
Project:		North	borough	ı Fire Stati	on				Contracto	r: Northbo	rough DPW	
Property L	ocation:	65 W	Main St	Northbor	ough MA				Excavato	r: Northbo	rough DPW	
Date of Te	est Hole:	2/21/2	2024	10:00am								
Soil Evalu		Webbe	er				_			MA		
Weather:	Sunny							Shaded	: Yes 🗸	No 🗌		
					SAM		ESCB	IPTION				
		Horizon	Boundaries	Soil (Colors							
Horizon	Depth	Dist	Торо	Matrix	Re-Dox Features	Ab.	S.	Con.	Texture	Structure	Consistence	Percent Gravel Cobbles Stone
Fill	0-39"											
с	39-66"			10yr 5/3					Fine Sandy Loam	Massive	Friable	15% G 10% C 10% S
Depth to Gro or Seepage: Estimated So Water Table	easonal Hi :	gh	66" 296.5			·	Depth or Lim Surfac	to Imperviting Laye	vious er: on of Test Pit	<u>66"</u> N/A 302		-
COMMENTS Asphalt pie Ponding @	eces down	to 33", r	nany boul	ders through	nout							
										TEST F	IOLE NO.	TP-9

				PAF	RE CORF	PORA		N			TEST HOLE NO.	TP-10
	EN	8 IGINEE		TONE VA	LLEY PLAC PLANNE		COLN, ***		ISLAND CONSULTANTS		SHEET 10 O	F 10
Property C	Owner:	Town	of Nortl	nborough								
Project:				n Fire Stat	ion				Contracto	or: Northbo	rough DPW	
Property L	ocation:								Excavato		rough DPW	
Date of Te	est Hole:	2/21/2	2024	2:15pm							-	
Soil Evalu		-						State /	Date of Exam:	MA		
Weather:	Sunny							Shaded	: Yes 🗸	No 🗌		
					SAMF	PLE D	ESCR	IPTION	l			
		Horizon	Boundaries	Soil	Colors	Re-	Dox Desc	ription				
Horizon	Depth	Dist	Торо	Matrix	Re-Dox Features	Ab.	S.	Con.	Texture	Structure	Consistence	Percent Gravel Cobbles Stone
Ар	0-11"			10yr 3/2					Sandy Loam	Massive	Friable	10% G 5% C 5% S
Bw	11-23"			10yr 6/4					Sandy Loam	Massive	Friable	10% G 5% C 5% S
с	23-84"			10yr 5/4	10yr 5/6 C 10yr 6/2 (D)				Fine Sandy Loam	Massive	Friable	10% G 5% C 5% S
	I		1	<u> </u>	1		Tetel	l		0.4" (mostine"	I	1
Depth to Gro or Seepage:			33"				Depth or Lim	to Imperviting Laye	er:	84" (machine lim	ıt <i>j</i>	
Estimated Se Water Table		gh	324.42					e Elevati ximate):	on of Test Pit	327.5		
	5: 37", around @ 33", left :		it only (slo	ow, minor)								
										TEST H	OLE NO.	TP-10
											OLL NO.	11-10

Town of Northborough NORTHBOROUGH FIRE STATION

APPENDIX B

Hydrologic Calculations - Existing and Proposed Conditions Hydraulic Design Table

Ex Hydro Prepared by Pare Corporation HydroCAD® 10.10-5a s/n 10894 © 2020 Hyd	23141.00 Existing Conditions 2-yr Storm NOAA 24-hr A 2-year Storm Rainfall=3.28" Printed 3/15/2024 troCAD Software Solutions LLC Page 2
Runoff by SCS T	0-72.00 hrs, dt=0.05 hrs, 1441 points R-20 method, UH=SCS, Weighted-CN nd method - Pond routing by Dyn-Stor-Ind method
SubcatchmentEDA-1A: Subcat EDA-1A	Runoff Area=5,384 sf 0.00% Impervious Runoff Depth=0.37" Tc=6.0 min CN=58 Runoff=0.05 cfs 166 cf
SubcatchmentEDA-1B: Subcat EDA-1B	Runoff Area=1,125 sf 19.02% Impervious Runoff Depth=0.78" Tc=6.0 min CN=68 Runoff=0.03 cfs 73 cf
SubcatchmentEDA-2A: Subcat EDA-2A	Runoff Area=144,794 sf 14.30% Impervious Runoff Depth=0.56" Flow Length=582' Tc=11.7 min CN=63 Runoff=1.99 cfs 6,704 cf
SubcatchmentEDA-2B: Subcat EDA-2B	Runoff Area=14,672 sf 0.00% Impervious Runoff Depth=0.27" Tc=6.0 min CN=55 Runoff=0.07 cfs 336 cf
SubcatchmentEDA-2C: Subcat EDA-2C	Runoff Area=22,192 sf 22.60% Impervious Runoff Depth=0.78" Flow Length=136' Tc=6.0 min CN=68 Runoff=0.63 cfs 1,436 cf
SubcatchmentEDA-2D: Subcat EDA-2D	Runoff Area=6,854 sf 94.48% Impervious Runoff Depth=2.83" Tc=6.0 min CN=96 Runoff=0.68 cfs 1,615 cf
SubcatchmentEDA-3A: Subcat EDA-3A	Runoff Area=1,409 sf 0.00% Impervious Runoff Depth=0.37" Tc=6.0 min CN=58 Runoff=0.01 cfs 43 cf
Link 1L: DP-1 Mass-DOT West	Inflow=0.08 cfs 239 cf Primary=0.08 cfs 239 cf
Link 2L: DP-2 Mass-DOT East	Inflow=2.91 cfs 10,091 cf Primary=2.91 cfs 10,091 cf
Link 3L: DP-3 Bank Parking Lot	Inflow=0.01 cfs 43 cf Primary=0.01 cfs 43 cf
Link 4L: _placeholder	Inflow=2.99 cfs 10,373 cf Primary=2.99 cfs 10,373 cf

Total Runoff Area = 196,431 sf Runoff Volume = 10,373 cf Average Runoff Depth = 0.63" 83.50% Pervious = 164,023 sf 16.50% Impervious = 32,408 sf

Summary for Subcatchment EDA-1A: Subcat EDA-1A

Runoff = 0.05 cfs @ 12.16 hrs, Volume= 166 cf, Depth= 0.37"

CN	Description		
61	>75% Gras	s cover, Go	bod, HSG B
55	Woods, Go	od, HSG B	
58	Weighted A	verage	
58	100.00% Pe	ervious Are	a
Slor	ve Velocity	Capacity	Description
			Description
(10)	(1/300)	(013)	Dive of Future
			Direct Entry,
	61 55 58 58 Slop	61 >75% Gras 55 Woods, Go 58 Weighted A	61 >75% Grass cover, Go 55 Woods, Good, HSG B 58 Weighted Average 58 100.00% Pervious Are Slope Velocity Capacity

Summary for Subcatchment EDA-1B: Subcat EDA-1B

Runoff = 0.03 cfs @ 12.14 hrs, Volume= 73 cf, Depth= 0.78"

A	rea (sf)	CN	Description		
	911	61	>75% Gras	s cover, Go	ood, HSG B
	214	98	Paved park	ing, HSG B	3
	1,125	68	Weighted A	verage	
	911	61	80.98% Per	vious Area	3
	214	98	19.02% Imp	pervious Ar	rea
Tc (min)	Length (feet)	Slop (ft/f		Capacity (cfs)	Description
6.0					Direct Entry,

Summary for Subcatchment EDA-2A: Subcat EDA-2A

Runoff = 1.99 cfs @ 12.23 hrs, Volume= 6,704 cf, Depth= 0.56"

A	rea (sf)	CN E	Description		
	40,064	61 >	75% Gras	s cover, Go	ood, HSG B
	14,578	98 F	aved park	ing, HSG B	
	6,125	98 F	Roofs, HSC	βB	
	84,026	55 V	Voods, Go	od, HSG B	
1	44,794	63 V	Veighted A	verage	
1	24,091	57 8	5.70% Pei	vious Area	
	20,704	98 1	4.30% Imp	pervious Are	ea
Тс	Length	Slope	Velocity		Description
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
2.2	25	0.3600	0.19		Sheet Flow,
					Woods: Light underbrush n= 0.400 P2= 3.28"
2.4	25	0.2800	0.17		Sheet Flow,
					Woods: Light underbrush n= 0.400 P2= 3.28"
6.1	378	0.1693	1.03		Shallow Concentrated Flow,
					Forest w/Heavy Litter Kv= 2.5 fps
0.6	74	0.0743	1.91		Shallow Concentrated Flow,
0.4	00	0 0050	0.04		Short Grass Pasture Kv= 7.0 fps
0.4	80	0.0250	3.21		Shallow Concentrated Flow,
					Paved Kv= 20.3 fps
11.7	582	Total			

Summary for Subcatchment EDA-2B: Subcat EDA-2B

Runoff = 0.07 cfs @ 12.19 hrs, Volume= 336 cf, Depth= 0.27"

Area (sf)	CN Descrip	otion	
14,672	55 Woods	, Good, HSG B	
14,672	55 100.00	% Pervious Are	a
Tc Length (min) (feet)	Slope Velo (ft/ft) (ft/s	ocity Capacity sec) (cfs)	Description
6.0			Direct Entry,

Summary for Subcatchment EDA-2C: Subcat EDA-2C

Runoff = 0.63 cfs @ 12.14 hrs, Volume= 1,436 cf, Depth= 0.78"

A	rea (sf)	CN I	Description		
	12,544	61 >	>75% Grass cover, Good, HSG B		
	2,235	98 I	Paved park	ing, HSG B	3
	2,780	98 I	Roofs, HSC	βB	
	4,633	55 \	Noods, Go	od, HSG B	
	22,192	68 V	Neighted A	verage	
	17,178			rvious Area	
	5,015	98 2	22.60% Imp	pervious Ar	ea
Tc	Length	Slope		Capacity	Description
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
4.4	50	0.2600	0.19		Sheet Flow,
					Woods: Light underbrush n= 0.400 P2= 3.28"
0.6	32	0.1250	0.88		Shallow Concentrated Flow,
					Forest w/Heavy Litter Kv= 2.5 fps
0.4	54	0.1204	2.43		Shallow Concentrated Flow,
					Short Grass Pasture Kv= 7.0 fps
5.4	136	Total,	Increased f	to minimum	1 Tc = 6.0 min

Summary for Subcatchment EDA-2D: Subcat EDA-2D

Runoff = 0.68 cfs @ 12.13 hrs, Volume= 1,615 cf, Depth= 2.83"

A	rea (sf)	CN	Description		
	378	61	>75% Gras	s cover, Go	ood, HSG B
	6,476	98	Paved park	ing, HSG B	3
	6,854	96	Weighted A	verage	
	378	61	5.52% Perv	vious Area	
	6,476	98	94.48% Imp	pervious Ar	rea
Tc (min)	Length (feet)	Slop (ft/f	,	Capacity (cfs)	Description
6.0					Direct Entry,

Summary for Subcatchment EDA-3A: Subcat EDA-3A

Runoff = 0.01 cfs @ 12.16 hrs, Volume= 43 cf, Depth= 0.37"

A	rea (sf)	CN	Description		
	760	61	>75% Gras	s cover, Go	ood, HSG B
	649	55	Woods, Go	od, HSG B	3
	1,409	58	Weighted A	verage	
	1,409	58	100.00% P	ervious Are	ea
Тс	Length	Slop		Capacity	Description
(min)	(feet)	(ft/f	t) (ft/sec)	(cfs)	
6.0					Direct Entry,
					•

Summary for Link 1L: DP-1 Mass-DOT West

Inflow Area =6,509 sf, 3.29% Impervious, Inflow Depth =0.44" for 2-year Storm eventInflow =0.08 cfs @12.16 hrs, Volume=239 cfPrimary =0.08 cfs @12.16 hrs, Volume=239 cf, Atten= 0%, Lag= 0.0 min

Summary for Link 2L: DP-2 Mass-DOT East

 Inflow Area =
 188,513 sf, 17.08% Impervious, Inflow Depth =
 0.64" for 2-year Storm event

 Inflow =
 2.91 cfs @
 12.19 hrs, Volume=
 10,091 cf

 Primary =
 2.91 cfs @
 12.19 hrs, Volume=
 10,091 cf, Atten= 0%, Lag= 0.0 min

Summary for Link 3L: DP-3 Bank Parking Lot

Inflow Area =1,409 sf,0.00% Impervious,Inflow Depth =0.37"for 2-year Storm eventInflow =0.01 cfs @12.16 hrs,Volume=43 cfPrimary =0.01 cfs @12.16 hrs,Volume=43 cf,Atten= 0%,Lag= 0.0 min

	23141.00 Existing Conditions 2-yr Storm
Ex Hydro	NOAA 24-hr A 2-year Storm Rainfall=3.28"
Prepared by Pare Corporation	Printed 3/15/2024
HydroCAD® 10.10-5a s/n 10894 © 2020 HydroCAD Software	Solutions LLC Page 13

Summary for Link 4L: _placeholder

 Inflow Area =
 196,431 sf, 16.50% Impervious, Inflow Depth =
 0.63" for 2-year Storm event

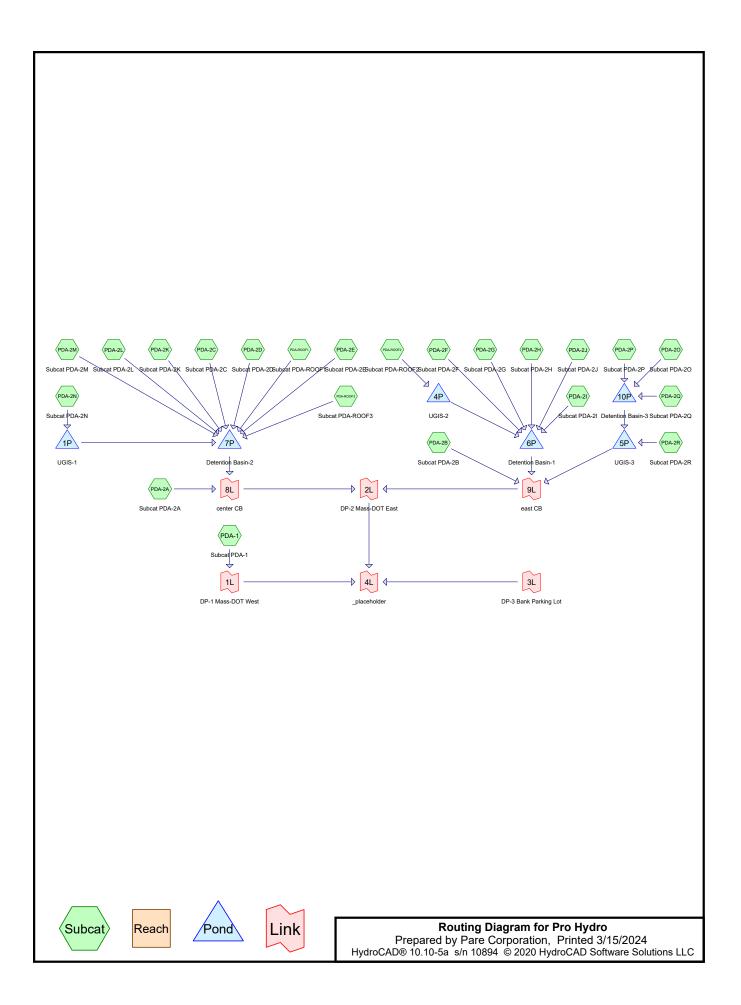
 Inflow =
 2.99 cfs @
 12.19 hrs, Volume=
 10,373 cf

 Primary =
 2.99 cfs @
 12.19 hrs, Volume=
 10,373 cf, Atten= 0%, Lag= 0.0 min

Ex Hydro Prepared by Pare Corporation HydroCAD® 10.10-5a s/n 10894 © 2020 Hyd	23141.00 Existing Conditions 10, 25, 100-yr Storm NOAA 24-hr A 10-year Storm Rainfall=5.02" Printed 3/15/2024 IroCAD Software Solutions LLC Page 1
Runoff by SCS T	0-72.00 hrs, dt=0.05 hrs, 1441 points R-20 method, UH=SCS, Weighted-CN nd method - Pond routing by Dyn-Stor-Ind method
SubcatchmentEDA-1A: Subcat EDA-1A	Runoff Area=5,384 sf 0.00% Impervious Runoff Depth=1.18" Tc=6.0 min CN=58 Runoff=0.23 cfs 529 cf
SubcatchmentEDA-1B: Subcat EDA-1B	Runoff Area=1,125 sf 19.02% Impervious Runoff Depth=1.89" Tc=6.0 min CN=68 Runoff=0.08 cfs 178 cf
SubcatchmentEDA-2A: Subcat EDA-2A	Runoff Area=144,794 sf 14.30% Impervious Runoff Depth=1.52" Flow Length=582' Tc=11.7 min CN=63 Runoff=6.65 cfs 18,359 cf
SubcatchmentEDA-2B: Subcat EDA-2B	Runoff Area=14,672 sf 0.00% Impervious Runoff Depth=0.99" Tc=6.0 min CN=55 Runoff=0.51 cfs 1,210 cf
SubcatchmentEDA-2C: Subcat EDA-2C	Runoff Area=22,192 sf 22.60% Impervious Runoff Depth=1.89" Flow Length=136' Tc=6.0 min CN=68 Runoff=1.64 cfs 3,502 cf
SubcatchmentEDA-2D: Subcat EDA-2D	Runoff Area=6,854 sf 94.48% Impervious Runoff Depth=4.55" Tc=6.0 min CN=96 Runoff=1.06 cfs 2,600 cf
SubcatchmentEDA-3A: Subcat EDA-3A	Runoff Area=1,409 sf 0.00% Impervious Runoff Depth=1.18" Tc=6.0 min CN=58 Runoff=0.06 cfs 139 cf
Link 1L: DP-1 Mass-DOT West	Inflow=0.32 cfs 707 cf Primary=0.32 cfs 707 cf
Link 2L: DP-2 Mass-DOT East	Inflow=8.92 cfs 25,672 cf Primary=8.92 cfs 25,672 cf
Link 3L: DP-3 Bank Parking Lot	Inflow=0.06 cfs 139 cf Primary=0.06 cfs 139 cf
Link 4L: _placeholder	Inflow=9.37 cfs 26,518 cf Primary=9.37 cfs 26,518 cf

Total Runoff Area = 196,431 sf Runoff Volume = 26,518 cf Average Runoff Depth = 1.62" 83.50% Pervious = 164,023 sf 16.50% Impervious = 32,408 sf

Ex Hydro Prepared by Pare Corporation HydroCAD® 10.10-5a s/n 10894 © 2020 Hyd	23141.00 Existing Conditions 10, 25, 100-yr Storm NOAA 24-hr A 25-year Storm Rainfall=6.10" Printed 3/15/2024 roCAD Software Solutions LLC Page 2
Runoff by SCS T	0-72.00 hrs, dt=0.05 hrs, 1441 points R-20 method, UH=SCS, Weighted-CN id method . Pond routing by Dyn-Stor-Ind method
SubcatchmentEDA-1A: Subcat EDA-1A	Runoff Area=5,384 sf 0.00% Impervious Runoff Depth=1.82" Tc=6.0 min CN=58 Runoff=0.37 cfs 816 cf
SubcatchmentEDA-1B: Subcat EDA-1B	Runoff Area=1,125 sf 19.02% Impervious Runoff Depth=2.70" Tc=6.0 min CN=68 Runoff=0.12 cfs 253 cf
SubcatchmentEDA-2A: Subcat EDA-2A	Runoff Area=144,794 sf 14.30% Impervious Runoff Depth=2.25" ow Length=582' Tc=11.7 min CN=63 Runoff=10.09 cfs 27,108 cf
SubcatchmentEDA-2B: Subcat EDA-2B	Runoff Area=14,672 sf 0.00% Impervious Runoff Depth=1.58" Tc=6.0 min CN=55 Runoff=0.86 cfs 1,926 cf
SubcatchmentEDA-2C: Subcat EDA-2C	Runoff Area=22,192 sf 22.60% Impervious Runoff Depth=2.70" Flow Length=136' Tc=6.0 min CN=68 Runoff=2.34 cfs 4,989 cf
SubcatchmentEDA-2D: Subcat EDA-2D	Runoff Area=6,854 sf 94.48% Impervious Runoff Depth=5.63" Tc=6.0 min CN=96 Runoff=1.29 cfs 3,214 cf
SubcatchmentEDA-3A: Subcat EDA-3A	Runoff Area=1,409 sf 0.00% Impervious Runoff Depth=1.82" Tc=6.0 min CN=58 Runoff=0.10 cfs 214 cf
Link 1L: DP-1 Mass-DOT West	Inflow=0.49 cfs 1,069 cf Primary=0.49 cfs 1,069 cf
Link 2L: DP-2 Mass-DOT East	Inflow=13.49 cfs 37,237 cf Primary=13.49 cfs 37,237 cf
Link 3L: DP-3 Bank Parking Lot	Inflow=0.10 cfs 214 cf Primary=0.10 cfs 214 cf
Link 4L: _placeholder	Inflow=14.03 cfs 38,520 cf Primary=14.03 cfs 38,520 cf


Total Runoff Area = 196,431 sf Runoff Volume = 38,520 cf Average Runoff Depth = 2.35" 83.50% Pervious = 164,023 sf 16.50% Impervious = 32,408 sf

Ex Hydro Prepared by Pare Corporation HydroCAD® 10.10-5a s/n 10894 © 2020 Hyd	23141.00 Existing Conditions 10, 25, 100-yr Storm NOAA 24-hr A 100-year Storm Rainfall=7.77" Printed 3/15/2024 roCAD Software Solutions LLC Page 3
Runoff by SCS T	0-72.00 hrs, dt=0.05 hrs, 1441 points R-20 method, UH=SCS, Weighted-CN id method . Pond routing by Dyn-Stor-Ind method
SubcatchmentEDA-1A: Subcat EDA-1A	Runoff Area=5,384 sf 0.00% Impervious Runoff Depth=2.95" Tc=6.0 min CN=58 Runoff=0.62 cfs 1,322 cf
SubcatchmentEDA-1B: Subcat EDA-1B	Runoff Area=1,125 sf 19.02% Impervious Runoff Depth=4.04" Tc=6.0 min CN=68 Runoff=0.18 cfs 379 cf
SubcatchmentEDA-2A: Subcat EDA-2A	Runoff Area=144,794 sf 14.30% Impervious Runoff Depth=3.49" ow Length=582' Tc=11.7 min CN=63 Runoff=15.89 cfs 42,096 cf
SubcatchmentEDA-2B: Subcat EDA-2B	Runoff Area=14,672 sf 0.00% Impervious Runoff Depth=2.63" Tc=6.0 min CN=55 Runoff=1.49 cfs 3,213 cf
SubcatchmentEDA-2C: Subcat EDA-2C	Runoff Area=22,192 sf 22.60% Impervious Runoff Depth=4.04" Flow Length=136' Tc=6.0 min CN=68 Runoff=3.49 cfs 7,477 cf
SubcatchmentEDA-2D: Subcat EDA-2D	Runoff Area=6,854 sf 94.48% Impervious Runoff Depth=7.29" Tc=6.0 min CN=96 Runoff=1.66 cfs 4,165 cf
SubcatchmentEDA-3A: Subcat EDA-3A	Runoff Area=1,409 sf 0.00% Impervious Runoff Depth=2.95" Tc=6.0 min CN=58 Runoff=0.16 cfs 346 cf
Link 1L: DP-1 Mass-DOT West	Inflow=0.79 cfs 1,701 cf Primary=0.79 cfs 1,701 cf
Link 2L: DP-2 Mass-DOT East	Inflow=21.00 cfs 56,950 cf Primary=21.00 cfs 56,950 cf
Link 3L: DP-3 Bank Parking Lot	Inflow=0.16 cfs 346 cf Primary=0.16 cfs 346 cf
Link 4L: _placeholder	Inflow=21.87 cfs 58,998 cf Primary=21.87 cfs 58,998 cf

Total Runoff Area = 196,431 sf Runoff Volume = 58,998 cf Average Runoff Depth = 3.60" 83.50% Pervious = 164,023 sf 16.50% Impervious = 32,408 sf

Ex Hydro Prepared by Pare Corporation <u>HydroCAD® 10.10-5a s/n 10894 © 2020 HydroCAD Soft</u>	23141.00 Existing Conditions WQv 1.2" Storm NOAA 24-hr A WQv 1.2" Rainfall=1.20" Printed 3/15/2024 tware Solutions LLC Page 1
Runoff by SCS TR-20 method,	s, dt=0.05 hrs, 1441 points UH=SCS, Split Pervious/Imperv. - Pond routing by Dyn-Stor-Ind method
SubcatchmentEDA-1A: Subcat EDA-1A Runof	ff Area=5,384 sf 0.00% Impervious Runoff Depth=0.00" Tc=6.0 min CN=58/0 Runoff=0.00 cfs 0 cf
SubcatchmentEDA-1B: Subcat EDA-1B Runoff	Area=1,125 sf 19.02% Impervious Runoff Depth=0.19" Tc=6.0 min CN=61/98 Runoff=0.01 cfs 18 cf
· · · · · ·	582' Tc=11.7 min CN=57/98 Runoff=0.60 cfs 1,701 cf
	Area=14,672 sf 0.00% Impervious Runoff Depth=0.00" Tc=6.0 min CN=55/0 Runoff=0.00 cfs 0 cf
Flow Lengt	Area=22,192 sf 22.60% Impervious Runoff Depth=0.22" h=136' Tc=6.0 min CN=59/98 Runoff=0.18 cfs 412 cf
	Area=6,854 sf 94.48% Impervious Runoff Depth=0.93" Tc=6.0 min CN=61/98 Runoff=0.23 cfs 532 cf ff Area=1,409 sf 0.00% Impervious Runoff Depth=0.00"
Link 1L: DP-1 Mass-DOT West	Tc=6.0 min CN=58/0 Runoff=0.00 cfs 0 cf Inflow=0.01 cfs 18 cf
Link 2L: DP-2 Mass-DOT East	Primary=0.01 cfs 18 cf Inflow=0.95 cfs 2,644 cf
Link 3L: DP-3 Bank Parking Lot	Primary=0.95 cfs 2,644 cf Inflow=0.00 cfs 0 cf
Link 4L: _placeholder	Primary=0.00 cfs 0 cf Inflow=0.96 cfs 2,662 cf Primary=0.96 cfs 2,662 cf

Total Runoff Area = 196,431 sf Runoff Volume = 2,662 cf Average Runoff Depth = 0.16" 83.50% Pervious = 164,023 sf 16.50% Impervious = 32,408 sf

Pro Hydro Prepared by Pare Corporation HydroCAD® 10.10-5a s/n 10894 © 2020 Hyd	23141.00 Proposed Conditions 2-yr Storm NOAA 24-hr A 2-year Storm Rainfall=3.28" Printed 3/15/2024 roCAD Software Solutions LLC Page 2						
Time span=0.00-72.00 hrs, dt=0.05 hrs, 1441 points Runoff by SCS TR-20 method, UH=SCS, Weighted-CN Reach routing by Dyn-Stor-Ind method , Pond routing by Dyn-Stor-Ind method							
SubcatchmentPDA-1: Subcat PDA-1	Runoff Area=1,142 sf 60.31% Impervious Runoff Depth=1.68" Tc=6.0 min CN=83 Runoff=0.07 cfs 159 cf						
SubcatchmentPDA-2A: Subcat PDA-2A	Runoff Area=3,194 sf 58.96% Impervious Runoff Depth=1.68" Tc=6.0 min CN=83 Runoff=0.21 cfs 446 cf						
SubcatchmentPDA-2B: Subcat PDA-2B	Runoff Area=1,730 sf 90.08% Impervious Runoff Depth=2.62" Tc=6.0 min CN=94 Runoff=0.16 cfs 378 cf						
SubcatchmentPDA-2C: Subcat PDA-2C	Runoff Area=5,944 sf 32.21% Impervious Runoff Depth=1.03" Tc=6.0 min CN=73 Runoff=0.24 cfs 512 cf						
SubcatchmentPDA-2D: Subcat PDA-2D	Runoff Area=2,329 sf 14.02% Impervious Runoff Depth=0.68" Tc=6.0 min CN=66 Runoff=0.06 cfs 133 cf						
SubcatchmentPDA-2E: Subcat PDA-2E	Runoff Area=3,332 sf 100.00% Impervious Runoff Depth=3.05" Tc=6.0 min CN=98 Runoff=0.34 cfs 846 cf						
SubcatchmentPDA-2F: Subcat PDA-2F	Runoff Area=4,072 sf 90.43% Impervious Runoff Depth=2.62" Tc=6.0 min CN=94 Runoff=0.39 cfs 890 cf						
SubcatchmentPDA-2G: Subcat PDA-2G	Runoff Area=3,190 sf 65.14% Impervious Runoff Depth=1.83" Tc=6.0 min CN=85 Runoff=0.23 cfs 485 cf						
SubcatchmentPDA-2H: Subcat PDA-2H	Runoff Area=3,620 sf 89.40% Impervious Runoff Depth=2.62" Tc=6.0 min CN=94 Runoff=0.34 cfs 791 cf						
SubcatchmentPDA-2I: Subcat PDA-2I	Runoff Area=2,986 sf 1.23% Impervious Runoff Depth=0.48" Tc=6.0 min CN=61 Runoff=0.04 cfs 119 cf						
SubcatchmentPDA-2J: Subcat PDA-2J	Runoff Area=14,841 sf 89.63% Impervious Runoff Depth=2.62" Tc=6.0 min CN=94 Runoff=1.40 cfs 3,242 cf						
SubcatchmentPDA-2K: Subcat PDA-2K	Runoff Area=5,283 sf 8.23% Impervious Runoff Depth=0.60" Tc=6.0 min CN=64 Runoff=0.11 cfs 263 cf						
SubcatchmentPDA-2L: Subcat PDA-2L	Runoff Area=13,395 sf 87.78% Impervious Runoff Depth=2.52" Tc=6.0 min CN=93 Runoff=1.24 cfs 2,816 cf						
SubcatchmentPDA-2M: Subcat PDA-2M	Runoff Area=7,503 sf 65.16% Impervious Runoff Depth=1.83" Tc=6.0 min CN=85 Runoff=0.53 cfs 1,142 cf						
SubcatchmentPDA-2N: Subcat PDA-2N	Runoff Area=4,661 sf 0.00% Impervious Runoff Depth=0.48" Tc=6.0 min CN=61 Runoff=0.07 cfs 185 cf						
SubcatchmentPDA-20: Subcat PDA-20	Runoff Area=59,192 sf 0.00% Impervious Runoff Depth=0.31" Flow Length=391' Tc=9.3 min CN=56 Runoff=0.31 cfs 1,505 cf						

Pro Hydro Prepared by Pare Corporation HydroCAD® 10.10-5a s/n 10894 © 2020 Hydro	23141.00 Proposed Conditions 2-yr Storm NOAA 24-hr A 2-year Storm Rainfall=3.28" Printed 3/15/2024 oCAD Software Solutions LLC Page 3
SubcatchmentPDA-2P: Subcat PDA-2P	Runoff Area=14,672 sf 0.00% Impervious Runoff Depth=0.27" Tc=6.0 min CN=55 Runoff=0.07 cfs 336 cf
SubcatchmentPDA-2Q: Subcat PDA-2Q	Runoff Area=22,194 sf 22.59% Impervious Runoff Depth=0.78" Tc=6.0 min CN=68 Runoff=0.63 cfs 1,436 cf
SubcatchmentPDA-2R: Subcat PDA-2R	Runoff Area=1,578 sf 0.00% Impervious Runoff Depth=0.48" Tc=6.0 min CN=61 Runoff=0.02 cfs 63 cf
SubcatchmentPDA-ROOF1:Subcat	Runoff Area=7,065 sf 99.84% Impervious Runoff Depth=3.05" Tc=6.0 min CN=98 Runoff=0.72 cfs 1,794 cf
SubcatchmentPDA-ROOF2:Subcat	Runoff Area=11,888 sf 99.99% Impervious Runoff Depth=3.05" Tc=6.0 min CN=98 Runoff=1.21 cfs 3,019 cf
SubcatchmentPDA-ROOF3:Subcat	Runoff Area=2,620 sf 99.07% Impervious Runoff Depth=3.05" Tc=6.0 min CN=98 Runoff=0.27 cfs 665 cf
Pond 1P: UGIS-1 Discarded	Peak Elev=299.17' Storage=41 cf Inflow=0.07 cfs 185 cf =0.02 cfs 185 cf Primary=0.00 cfs 0 cf Outflow=0.02 cfs 185 cf
Pond 4P: UGIS-2 Discarded=0.01	Peak Elev=300.15' Storage=255 cf Inflow=1.21 cfs 3,019 cf cfs 766 cf Primary=1.17 cfs 2,252 cf Outflow=1.18 cfs 3,019 cf
Pond 5P: UGIS-3 Discarded=0.04 c	Peak Elev=300.91' Storage=741 cf Inflow=0.61 cfs 3,354 cf fs 1,987 cf Primary=0.63 cfs 1,366 cf Outflow=0.66 cfs 3,354 cf
Pond 6P: Detention Basin-1	Peak Elev=297.30' Storage=3,586 cf Inflow=3.55 cfs 7,779 cf Outflow=1.02 cfs 7,742 cf
Pond 7P: Detention Basin-2	Peak Elev=298.23' Storage=3,303 cf Inflow=3.48 cfs 8,171 cf Outflow=1.12 cfs 8,126 cf
Pond 10P: Detention Basin-3	Peak Elev=310.65' Storage=157 cf Inflow=0.91 cfs 3,278 cf Outflow=0.59 cfs 3,291 cf
Link 1L: DP-1 Mass-DOT West	Inflow=0.07 cfs 159 cf Primary=0.07 cfs 159 cf
Link 2L: DP-2 Mass-DOT East	Inflow=2.77 cfs 18,058 cf Primary=2.77 cfs 18,058 cf
Link 3L: DP-3 Bank Parking Lot	Primary=0.00 cfs_0 cf
Link 4L: _placeholder	Inflow=2.78 cfs 18,217 cf Primary=2.78 cfs 18,217 cf
Link 8L: center CB	Inflow=1.20 cfs 8,571 cf Primary=1.20 cfs 8,571 cf

Link 9L: east CB

Inflow=1.65 cfs 9,487 cf Primary=1.65 cfs 9,487 cf

Total Runoff Area = 196,433 sf Runoff Volume = 21,226 cf Average Runoff Depth = 1.30" 61.48% Pervious = 120,761 sf 38.52% Impervious = 75,671 sf

Summary for Subcatchment PDA-1: Subcat PDA-1

Runoff = 0.07 cfs @ 12.13 hrs, Volume= 159 cf, Depth= 1.68"

A	rea (sf)	CN	Description			
	453	61	>75% Grass cover, Good, HSG B			
	689	98	Paved parking, HSG B			
	1,142	83	Weighted Average			
	453	61	39.69% Pervious Area			
	689	98	60.31% Impervious Area			
Tc (min)	Length (feet)	Slop (ft/f	,	Capacity (cfs)	Description	
6.0					Direct Entry,	

Summary for Subcatchment PDA-2A: Subcat PDA-2A

Runoff = 0.21 cfs @ 12.13 hrs, Volume= 446 cf, Depth= 1.68"

A	rea (sf)	CN	Description			
	1,311	61	>75% Grass cover, Good, HSG B			
	1,883	98	Paved parking, HSG B			
	3,194	83	Weighted Average			
	1,311	61	41.04% Pervious Area			
	1,883	98	58.96% Impervious Area			
Tc (min)	Length (feet)	Slop (ft/ft		Capacity (cfs)	Description	
6.0					Direct Entry,	

Summary for Subcatchment PDA-2B: Subcat PDA-2B

Runoff = 0.16 cfs @ 12.13 hrs, Volume= 378 cf, Depth= 2.62"

A	rea (sf)	CN	Description					
	172	61	>75% Gras	s cover, Go	lood, HSG B			
	1,558	98	Paved park	ing, HSG B	В			
	1,730	94	Weighted A	verage				
	172	61	9.92% Pervious Area					
	1,558	98	90.08% Imp	pervious Ar	rea			
Tc (min)	Length (feet)	Slop (ft/f		Capacity (cfs)	•			
6.0	(icci)	(101	(10300)	(013)	Direct Entry,			

Summary for Subcatchment PDA-2C: Subcat PDA-2C

Runoff = 0.24 cfs @ 12.14 hrs, Volume= 512 cf, Depth= 1.03"

A	rea (sf)	CN	Description					
	4,030	61	>75% Gras	s cover, Go	ood, HSG B			
	1,884	98	Paved park	ing, HSG B	В			
	30	98	Roofs, HSC	βB				
	5,944	73	Weighted A	verage				
	4,030	61	67.79% Pe	67.79% Pervious Area				
	1,914	98	32.21% lm	32.21% Impervious Area				
Tc (min)	Length (feet)	Slop (ft/f		Capacity (cfs)	Description			
6.0					Direct Entry,			

Summary for Subcatchment PDA-2D: Subcat PDA-2D

Runoff = 0.06 cfs @ 12.15 hrs, Volume= 133 cf, Depth= 0.68"

A	rea (sf)	CN	Description						
	2,003	61	>75% Gras	s cover, Go	ood, HSG B				
	326	98	Paved park	ing, HSG B	В				
	2,329	66	Weighted A	verage					
	2,003	61	85.98% Per	85.98% Pervious Area					
	326	98	14.02% Imp	pervious Ar	rea				
Tc (min)	Length (feet)	Slop (ft/f	,	Capacity (cfs)	Description				
6.0					Direct Entry,				

Summary for Subcatchment PDA-2E: Subcat PDA-2E

Runoff = 0.34 cfs @ 12.13 hrs, Volume= 846 cf, Depth= 3.05"

Area	(sf) CN	Description							
3,3	332 98	98 Paved parking, HSG B							
3,3	332 98	98 100.00% Impervious Area							
	ngth Slo eet) (ft/		Capacity (cfs)	Description					
6.0				Direct Entry,					

Summary for Subcatchment PDA-2F: Subcat PDA-2F

Runoff = 0.39 cfs @ 12.13 hrs, Volume= 890 cf, Depth= 2.62"

rea (sf)	CN	Description						
390	61	>75% Gras	s cover, Go	Good, HSG B				
3,683	98	Paved park	ing, HSG B	В				
4,072	94	Weighted A	verage					
390	61	9.57% Perv	9.57% Pervious Area					
3,683	98	90.43% Imp	pervious Ar	vrea				
Length (feet)			Capacity (cfs)					
				Direct Entry,				
	390 3,683 4,072 390 3,683 Length	390 61 3,683 98 4,072 94 390 61 3,683 98 Length Slop	390 61 >75% Gras 3,683 98 Paved park 4,072 94 Weighted A 390 61 9.57% Perv 3,683 98 90.43% Imp Length Slope Velocity	39061>75% Grass cover, G3,68398Paved parking, HSG4,07294Weighted Average390619.57% Pervious Area3,6839890.43% Impervious ALengthSlopeVelocityCapacity				

Summary for Subcatchment PDA-2G: Subcat PDA-2G

Runoff = 0.23 cfs @ 12.13 hrs, Volume= 485 cf, Depth= 1.83"

rea (sf)	CN	Description					
1,112	61	>75% Gras	s cover, Go	Good, HSG B			
2,078	98	Paved park	ing, HSG B	В			
3,190	85	Weighted A	verage				
1,112	61	34.86% Pervious Area					
2,078	98	65.14% Imp	pervious Ar	Nrea			
Length (feet)			Capacity (cfs)				
				Direct Entry,			
	2,078 3,190 1,112 2,078 Length	1,112 61 2,078 98 3,190 85 1,112 61 2,078 98 Length Slop	1,112 61 >75% Gras 2,078 98 Paved park 3,190 85 Weighted A 1,112 61 34.86% Per 2,078 98 65.14% Imp Length Slope Velocity	1,11261>75% Grass cover, G2,07898Paved parking, HSG3,19085Weighted Average1,1126134.86% Pervious Are2,0789865.14% Impervious ALengthSlopeVelocityCapacityCapacity			

Summary for Subcatchment PDA-2H: Subcat PDA-2H

Runoff = 0.34 cfs @ 12.13 hrs, Volume= 791 cf, Depth= 2.62"

A	rea (sf)	CN	Description						
	384	61	>75% Gras	s cover, Go	ood, HSG B				
	3,237	98	Paved park	ing, HSG B	3				
	3,620	94	Weighted A	Weighted Average					
	384	61	10.60% Pervious Area						
	3,237	98	89.40% Imp	pervious Ar	rea				
Tc (min)	Length (feet)	Slop (ft/f	,	Capacity (cfs)	Description				
6.0					Direct Entry,				

Summary for Subcatchment PDA-2I: Subcat PDA-2I

Runoff = 0.04 cfs @ 12.15 hrs, Volume= 119 cf, Depth= 0.48"

A	rea (sf)	CN	Description					
	2,949	61	>75% Gras	s cover, Go	ood, HSG B			
	37	98	Paved park	ing, HSG B	В			
	2,986	61	Weighted A	verage				
	2,949	61	98.77% Pervious Area					
	37	98	1.23% Impe	ervious Are	ea			
Tc (min)	Length (feet)	Slop (ft/f	,	Capacity (cfs)	Description			
6.0					Direct Entry,			

Summary for Subcatchment PDA-2J: Subcat PDA-2J

Runoff = 1.40 cfs @ 12.13 hrs, Volume= 3,242 cf, Depth= 2.62"

A	rea (sf)	CN	Description					
	1,539	61	>75% Gras	s cover, Go	ood, HSG B			
	13,302	98	Paved park	ing, HSG B	3			
	14,841	94	Weighted Average					
	1,539	61	10.37% Pervious Area					
	13,302	98	89.63% Imp	pervious Ar	rea			
Tc (min)	Length (feet)	Slop (ft/ft	,	Capacity (cfs)	Description			
6.0					Direct Entry,			

Summary for Subcatchment PDA-2K: Subcat PDA-2K

Runoff = 0.11 cfs @ 12.15 hrs, Volume= 263 cf, Depth= 0.60"

A	rea (sf)	CN	Description					
	4,848	61	>75% Gras	s cover, Go	ood, HSG B			
	432	98	Paved park	ing, HSG B	В			
	3	98	Roofs, HSC	βB				
	5,283	64	Weighted A	verage				
	4,848	61	91.77% Pe	91.77% Pervious Area				
	435	98	8.23% Impe	8.23% Impervious Area				
Tc (min)	Length (feet)	Slop (ft/f		Capacity (cfs)	Description			
6.0					Direct Entry,			

Summary for Subcatchment PDA-2L: Subcat PDA-2L

Runoff = 1.24 cfs @ 12.13 hrs, Volume= 2,816 cf, Depth= 2.52"

A	rea (sf)	CN	Description					
	1,637	61	>75% Gras	s cover, Go	ood, HSG B			
	11,758	98	Paved park	ing, HSG E	3			
	13,395	93	Weighted A	verage				
	1,637	61	12.22% Pervious Area					
	11,758	98	87.78% Imp	pervious Ar	rea			
Tc (min)	Length (feet)	Slop (ft/ft		Capacity (cfs)	Description			
6.0					Direct Entry,			

Summary for Subcatchment PDA-2M: Subcat PDA-2M

Runoff = 0.53 cfs @ 12.13 hrs, Volume= 1,142 cf, Depth= 1.83"

A	rea (sf)	CN	Description						
	2,605	61	>75% Gras	s cover, Go	lood, HSG B				
	4,889	98	Paved park	ing, HSG B	В				
	9	55	Woods, Go	od, HSG B	3				
	7,503	85	Weighted A	verage					
	2,614	61	34.84% Pe	34.84% Pervious Area					
	4,889	98	65.16% Imp	pervious Ar	rea				
Tc (min)	Length (feet)	Slop (ft/f	,	Capacity (cfs)	Description				
6.0					Direct Entry,				

Summary for Subcatchment PDA-2N: Subcat PDA-2N

Runoff = 0.07 cfs @ 12.15 hrs, Volume= 185 cf, Depth= 0.48"

A	rea (sf)	CN	Description		
	4,609	61	>75% Gras	s cover, Go	ood, HSG B
	52	55	Woods, Go	od, HSG B	3
	4,661	61	Weighted A	verage	
	4,661	61	100.00% P	ervious Are	ea
Тс	Length	Slop		Capacity	Description
(min)	(feet)	(ft/f	t) (ft/sec)	(cfs)	
6.0					Direct Entry,

Summary for Subcatchment PDA-20: Subcat PDA-20

Runoff = 0.31 cfs @ 12.24 hrs, Volume= 1,505 cf, Depth= 0.31"

Α	vrea (sf)	CN E	Description		
	11,200	61 >	75% Gras	s cover, Go	bod, HSG B
	47,992	55 V	Voods, Go	od, HSG B	
	59,192	56 V	Veighted A	verage	
	59,192	56 1	00.00% Pe	ervious Are	а
_				•	-
Tc	5	Slope	Velocity	Capacity	Description
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
2.2	25	0.3600	0.19		Sheet Flow,
					Woods: Light underbrush n= 0.400 P2= 3.28"
2.4	25	0.2800	0.17		Sheet Flow,
					Woods: Light underbrush n= 0.400 P2= 3.28"
4.1	260	0.1769	1.05		Shallow Concentrated Flow,
					Forest w/Heavy Litter Kv= 2.5 fps
0.6	81	0.1099	2.32		Shallow Concentrated Flow,
					Short Grass Pasture Kv= 7.0 fps
9.3	391	Total			

Summary for Subcatchment PDA-2P: Subcat PDA-2P

Runoff = 0.07 cfs @ 12.19 hrs, Volume= 336 cf, Depth= 0.27"

Area (sf)	CN	Description					
14,672	55	55 Woods, Good, HSG B					
14,672	55	100.00% P	ervious Are	a			
Tc Length (min) (feet)	Slope (ft/ft	e Velocity) (ft/sec)	Capacity (cfs)	Description			
6.0				Direct Entry,			

Summary for Subcatchment PDA-2Q: Subcat PDA-2Q

Runoff = 0.63 cfs @ 12.14 hrs, Volume= 1,436 cf, Depth= 0.78"

	Area (sf)	CN	Description				
	12,545	61	>75% Gras	s cover, Go	Good, HSG B		
	2,235	98	Paved park	ing, HSG E	В		
	2,780	98	Roofs, HSG	βB			
	4,634	55	Woods, Go	od, HSG B	3		
	22,194	68	Weighted A	verage			
	17,179	59	77.41% Per	vious Area	а		
	5,015	98	22.59% Imp	pervious Ar	rea		
т.	1	0		0	Description		
Tc	5	Slop		Capacity			
(min)	(feet)	(ft/f	t) (ft/sec)	(cfs)			
6.0					Direct Entry,		

Summary for Subcatchment PDA-2R: Subcat PDA-2R

Runoff = 0.02 cfs @ 12.15 hrs, Volume= 63 cf, Depth= 0.48"

A	rea (sf)	CN	Description		
	1,575	61	>75% Gras	s cover, Go	ood, HSG B
	3	55	Woods, Go	od, HSG B	3
	1,578	61	Weighted A	verage	
	1,578	61	100.00% P	ervious Are	ea
Тс	Length	Slop		Capacity	· · · · · · · · · · · · · · · · · · ·
(min)	(feet)	(ft/f	t) (ft/sec)	(cfs)	
6.0					Direct Entry,
					•

Summary for Subcatchment PDA-ROOF1: Subcat PDA-ROOF1

Runoff = 0.72 cfs @ 12.13 hrs, Volume= 1,794 cf, Depth= 3.05"

A	rea (sf)	CN	Description		
	11	61	>75% Gras	s cover, Go	lood, HSG B
	7,054	98	Roofs, HSC	βB	
	7,065	98	Weighted A	verage	
	11	61	0.16% Perv	vious Area	
	7,054	98	99.84% Imp	pervious Ar	rea
Tc (min)	Length (feet)	Slop (ft/ft		Capacity (cfs)	
6.0					Direct Entry,

Summary for Subcatchment PDA-ROOF2: Subcat PDA-ROOF2

Runoff = 1.21 cfs @ 12.13 hrs, Volume= 3,019 cf, Depth= 3.05"

Area (st) CN	N Description				
	1 61	>75% Grass cover, Good, HSG B				
2	6 98	Paved parking, HSG B				
11,86	0 98	Roofs, HSG B				
11,88	8 98	Weighted Average				
	1 61	0.01% Pervious Area				
11,88	6 98	99.99% Impervious Area				
Tc Leng (min) (fee		pe Velocity Capacity Description /ft) (ft/sec) (cfs)				
6.0		Direct Entry,				

Summary for Subcatchment PDA-ROOF3: Subcat PDA-ROOF3

Runoff = 0.27 cfs @ 12.13 hrs, Volume= 665 cf, Depth= 3.05"

A	rea (sf)	CN	Description				
	24	61	>75% Gras	s cover, Go	ood, HSG B		
	2	98	Paved park	ing, HSG B	5		
	2,593	98	Roofs, HSC	βB			
	2,620	98	Weighted A	verage			
	24	61	0.93% Perv	vious Area			
	2,596	98	99.07% lmp	pervious Ar	ea		
Tc (min)	Length (feet)	Slop (ft/f		Capacity (cfs)	Description		
6.0					Direct Entry,		

	23141.00 Proposed Conditions 2-yr Storm
Pro Hydro	NOAA 24-hr A 2-year Storm Rainfall=3.28"
Prepared by Pare Corporation	Printed 3/15/2024
HydroCAD® 10.10-5a s/n 10894 © 2020 HydroCAD Software	e Solutions LLC Page 27

Summary for Pond 1P: UGIS-1

Inflow Area =	4,661 sf, 0.00% Impervious,	Inflow Depth = 0.48" for 2-year Storm event
Inflow =	0.07 cfs @ 12.15 hrs, Volume=	185 cf
Outflow =	0.02 cfs @ 12.66 hrs, Volume=	185 cf, Atten= 77%, Lag= 30.1 min
Discarded =	0.02 cfs @ 12.66 hrs, Volume=	185 cf
Primary =	0.00 cfs @ 0.00 hrs, Volume=	0 cf

Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Peak Elev= 299.17' @ 12.66 hrs Surf.Area= 617 sf Storage= 41 cf

Plug-Flow detention time= 19.7 min calculated for 185 cf (100% of inflow) Center-of-Mass det. time= 19.7 min (891.6 - 871.9)

Volume	Invert	Avail.Storage	Storage Description
#1A	299.00'	396 cf	61.67'W x 10.00'L x 2.04'H Field A
			1,259 cf Overall - 268 cf Embedded = 991 cf x 40.0% Voids
#2A	299.50'	268 cf	Cultec C-100HD x 18 Inside #1
			Effective Size= 32.1"W x 12.0"H => 1.86 sf x 7.50'L = 14.0 cf
			Overall Size= 36.0"W x 12.5"H x 8.00'L with 0.50' Overlap
			Row Length Adjustment= +0.50' x 1.86 sf x 18 rows
		664 cf	Total Available Storage

Storage Group A created with Chamber Wizard

Device	Routing	Invert	Outlet Devices
#1	Discarded	299.00'	1.020 in/hr Exfiltration over Surface area
			Conductivity to Groundwater Elevation = 296.50' Phase-In= 0.01'
#2	Primary	299.50'	12.0" Round Culvert L= 50.0' Ke= 0.900
			Inlet / Outlet Invert= 299.50' / 299.25' S= 0.0050 '/' Cc= 0.900
			n= 0.013, Flow Area= 0.79 sf
#3	Device 2	300.50'	5.0' long Sharp-Crested Rectangular Weir 2 End Contraction(s)

Discarded OutFlow Max=0.02 cfs @ 12.66 hrs HW=299.17' (Free Discharge) **1=Exfiltration** (Controls 0.02 cfs)

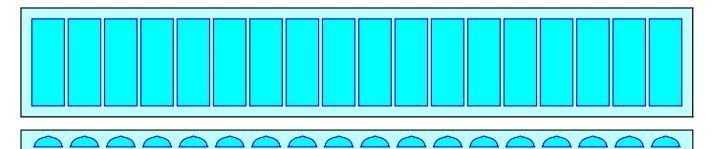
Primary OutFlow Max=0.00 cfs @ 0.00 hrs HW=299.00' TW=297.50' (Dynamic Tailwater) 2=Culvert (Controls 0.00 cfs) 3=Sharp-Crested Rectangular Weir(Controls 0.00 cfs)

Pond 1P: UGIS-1 - Chamber Wizard Field A

Chamber Model = Cultec C-100HD (Cultec Contactor® 100HD)

Effective Size= 32.1"W x 12.0"H => 1.86 sf x 7.50'L = 14.0 cf Overall Size= 36.0"W x 12.5"H x 8.00'L with 0.50' Overlap Row Length Adjustment= +0.50' x 1.86 sf x 18 rows

36.0" Wide + 4.0" Spacing = 40.0" C-C Row Spacing


1 Chambers/Row x 7.50' Long +0.50' Row Adjustment = 8.00' Row Length +12.0" End Stone x 2 = 10.00' Base Length 18 Rows x 36.0" Wide + 4.0" Spacing x 17 + 12.0" Side Stone x 2 = 61.67' Base Width 6.0" Stone Base + 12.5" Chamber Height + 6.0" Stone Cover = 2.04' Field Height

18 Chambers x 14.0 cf +0.50' Row Adjustment x 1.86 sf x 18 Rows = 268.1 cf Chamber Storage

1,259.0 cf Field - 268.1 cf Chambers = 991.0 cf Stone x 40.0% Voids = 396.4 cf Stone Storage

Chamber Storage + Stone Storage = 664.4 cf = 0.015 afOverall Storage Efficiency = 52.8%Overall System Size = $10.00' \times 61.67' \times 2.04'$

18 Chambers 46.6 cy Field 36.7 cy Stone

Pro Hydro

Prepared by Pare Corporation HydroCAD® 10.10-5a s/n 10894 © 2020 HydroCAD Software Solutions LLC

Stage-Discharge for Pond 1P: UGIS-1

Elevation (feet)	Discharge (cfs)	Discarded (cfs)	Primary (cfs)
299.00	0.00	0.00	0.00
299.00	0.00	0.00	0.00
299.10	0.02	0.02	0.00
299.15	0.02	0.02	0.00
299.20	0.02	0.02	0.00
299.25	0.02	0.02	0.00
299.30	0.02	0.02	0.00
299.35	0.02	0.02	0.00
299.40	0.02	0.02	0.00
299.45	0.02	0.02	0.00
299.50	0.02	0.02	0.00
299.55	0.02	0.02	0.00
299.60	0.02	0.02	0.00
299.65	0.02	0.02	0.00
299.70	0.02	0.02	0.00
299.75	0.02	0.02	0.00
299.80 299.85	0.02 0.02	0.02 0.02	0.00 0.00
299.85 299.90	0.02	0.02	0.00
299.90	0.02	0.02	0.00
300.00	0.02	0.02	0.00
300.05	0.02	0.02	0.00
300.10	0.02	0.02	0.00
300.15	0.02	0.02	0.00
300.20	0.02	0.02	0.00
300.25	0.02	0.02	0.00
300.30	0.02	0.02	0.00
300.35	0.02	0.02	0.00
300.40	0.02	0.02	0.00
300.45	0.02	0.02	0.00
300.50	0.02	0.02	0.00
300.55	0.21	0.02	0.18
300.60	0.54	0.02	0.51
300.65 300.70	0.97 1.48	0.02 0.02	0.94 1.45
300.70	2.05	0.02	2.02
300.75	2.05	0.02	2.02
300.85	2.65	0.03	2.62
300.90	2.05	0.03	2.73
300.95	2.86	0.03	2.83
301.00	2.96	0.03	2.93

Stage-Area-Storage for Pond 1P: UGIS-1

-	o (01
Elevation (feet)	Surface (sq-ft)	Storage (cubic-feet)
299.00	<u>(sq-it)</u> 617	0
299.00	617	12
299.10	617	25
299.15	617	37
299.20	617	49
299.25	617	62
299.30	617	74
299.35	617	86
299.40	617	99
299.45	617	111
299.50	617	123
299.55	617	147
299.60	617	170
299.65	617	194
299.70	617	216
299.75	617	239
299.80	617 617	262 285
299.85 299.90	617	285 307
299.90	617	329
300.00	617	351
300.05	617	372
300.10	617	393
300.15	617	414
300.20	617	434
300.25	617	453
300.30	617	471
300.35	617	488
300.40	617	504
300.45	617	518
300.50	617	531
300.55	617	543
300.60	617	556
300.65	617	568
300.70 300.75	617 617	580 593
300.80	617	605
300.85	617	617
300.90	617	630
300.95	617	642
301.00	617	654

Pro Hydro23141.00 Proposed Conditions 2-yr Storm
NOAA 24-hr A 2-year Storm Rainfall=3.28"Prepared by Pare CorporationPrinted 3/15/2024HydroCAD® 10.10-5a s/n 10894 © 2020 HydroCAD Software Solutions LLCPage 31

Summary for Pond 4P: UGIS-2

Inflow Area =	11,888 sf, 99.99% Impervious,	Inflow Depth = 3.05" for 2-year Storm event
Inflow =	1.21 cfs @ 12.13 hrs, Volume=	3,019 cf
Outflow =	1.18 cfs @ 12.14 hrs, Volume=	3,019 cf, Atten= 2%, Lag= 1.1 min
Discarded =	0.01 cfs @ 12.14 hrs, Volume=	766 cf
Primary =	1.17 cfs @ 12.14 hrs, Volume=	2,252 cf

Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Peak Elev= 300.15' @ 12.14 hrs Surf.Area= 292 sf Storage= 255 cf

Plug-Flow detention time= 39.4 min calculated for 3,017 cf (100% of inflow) Center-of-Mass det. time= 39.5 min (792.3 - 752.8)

Volume	Invert	Avail.Storage	Storage Description
#1A	298.50'	245 cf	11.67'W x 25.00'L x 2.54'H Field A
			741 cf Overall - 128 cf Embedded = 613 cf x 40.0% Voids
#2A	299.50'	128 cf	Cultec C-100HD x 9 Inside #1
			Effective Size= 32.1"W x 12.0"H => 1.86 sf x 7.50'L = 14.0 cf
			Overall Size= 36.0"W x 12.5"H x 8.00'L with 0.50' Overlap
			Row Length Adjustment= +0.50' x 1.86 sf x 3 rows
		374 cf	Total Available Storage

Storage Group A created with Chamber Wizard

Device	Routing	Invert	Outlet Devices
#1	Discarded	298.50'	1.020 in/hr Exfiltration over Surface area
			Conductivity to Groundwater Elevation = 296.50' Phase-In= 0.01'
#2	Primary	299.50'	12.0" Round Culvert L= 50.0' Ke= 0.900
			Inlet / Outlet Invert= 299.50' / 298.75' S= 0.0150 '/' Cc= 0.900
			n= 0.013, Flow Area= 0.79 sf
#3	Primary	300.50'	5.0' long Sharp-Crested Rectangular Weir 2 End Contraction(s)

Discarded OutFlow Max=0.01 cfs @ 12.14 hrs HW=300.14' (Free Discharge) **1=Exfiltration** (Controls 0.01 cfs)

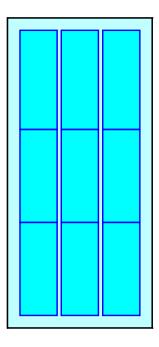
Primary OutFlow Max=1.15 cfs @ 12.14 hrs HW=300.14' TW=297.14' (Dynamic Tailwater) -2=Culvert (Inlet Controls 1.15 cfs @ 2.15 fps) -3=Sharp-Crested Rectangular Weir(Controls 0.00 cfs)

Pond 4P: UGIS-2 - Chamber Wizard Field A

Chamber Model = Cultec C-100HD (Cultec Contactor® 100HD)

Effective Size= 32.1"W x 12.0"H => 1.86 sf x 7.50'L = 14.0 cf Overall Size= 36.0"W x 12.5"H x 8.00'L with 0.50' Overlap Row Length Adjustment= +0.50' x 1.86 sf x 3 rows

36.0" Wide + 4.0" Spacing = 40.0" C-C Row Spacing


3 Chambers/Row x 7.50' Long +0.50' Row Adjustment = 23.00' Row Length +12.0" End Stone x 2 = 25.00' Base Length 3 Rows x 36.0" Wide + 4.0" Spacing x 2 + 12.0" Side Stone x 2 = 11.67' Base Width 12.0" Stone Base + 12.5" Chamber Height + 6.0" Stone Cover = 2.54' Field Height

9 Chambers x 14.0 cf +0.50' Row Adjustment x 1.86 sf x 3 Rows = 128.4 cf Chamber Storage

741.3 cf Field - 128.4 cf Chambers = 612.9 cf Stone x 40.0% Voids = 245.2 cf Stone Storage

Chamber Storage + Stone Storage = 373.6 cf = 0.009 afOverall Storage Efficiency = 50.4%Overall System Size = $25.00' \times 11.67' \times 2.54'$

9 Chambers 27.5 cy Field 22.7 cy Stone

Pro Hydro

Stage-Discharge for Pond 4P: UGIS-2

Elevation	Discharge	Discarded	Primary
(feet)	(cfs)	(cfs)	<u>(cfs)</u>
298.50	0.00	0.00	0.00
298.55	0.01	0.01	0.00
298.60	0.01	0.01	0.00
298.65	0.01	0.01	0.00
298.70 298.75	0.01 0.01	0.01 0.01	0.00 0.00
298.80	0.01	0.01	0.00
298.85	0.01	0.01	0.00
298.90	0.01	0.01	0.00
298.95	0.01	0.01	0.00
299.00	0.01	0.01	0.00
299.05	0.01	0.01	0.00
299.10	0.01	0.01	0.00
299.15	0.01	0.01	0.00
299.20	0.01	0.01	0.00
299.25	0.01	0.01	0.00
299.30	0.01	0.01	0.00
299.35	0.01	0.01	0.00
299.40	0.01	0.01	0.00
299.45	0.01	0.01	0.00
299.50	0.01	0.01	0.00
299.55	0.02	0.01	0.01
299.60	0.05	0.01	0.03
299.65 299.70	0.09 0.15	0.01 0.01	0.08 0.13
299.70	0.13	0.01	0.13
299.80	0.22	0.01	0.29
299.85	0.40	0.01	0.39
299.90	0.51	0.01	0.50
299.95	0.63	0.01	0.62
300.00	0.76	0.01	0.75
300.05	0.89	0.01	0.88
300.10	1.04	0.01	1.02
300.15	1.18	0.01	1.17
300.20	1.33	0.01	1.32
300.25	1.48	0.01	1.47
300.30	1.63	0.01	1.62
300.35	1.78	0.01	1.76
300.40	1.91	0.01	1.90
300.45	2.03	0.01	2.02
300.50 300.55	2.12 2.41	0.01	2.11
300.55	2.41	0.01 0.01	2.40 2.83
300.65	3.37	0.01	3.35
300.05	3.96	0.01	3.95
300.75	4.62	0.01	4.61
300.80	5.34	0.01	5.32
300.85	6.11	0.01	6.09
300.90	6.92	0.02	6.90
300.95	7.77	0.02	7.76
301.00	8.67	0.02	8.65

Stage-Area-Storage for Pond 4P: UGIS-2

Elevation (feet)	Surface (sq-ft)	Storage (cubic-feet)
298.50	292	0
298.55	292	6
298.60	292	12
298.65	292	17
298.70 298.75	292 292	23 29
298.80	292	35
298.85	292	41
298.90	292	47
298.95	292	52
299.00	292	58
299.05	292	64
299.10	292	70
299.15 299.20	292 292	76 82
299.25	292	88
299.30	292	93
299.35	292	99
299.40	292	105
299.45	292	111
299.50	292	117
299.55 299.60	292 292	128 139
299.65	292	150
299.70	292	161
299.75	292	172
299.80	292	183
299.85	292	193
299.90	292	204
299.95	292 292	215 225
300.00 300.05	292	225
300.10	292	235
300.15	292	255
300.20	292	264
300.25	292	273
300.30	292	282
300.35 300.40	292 292	290
300.40	292	298 304
300.50	292	310
300.55	292	316
300.60	292	322
300.65	292	328
300.70	292	334
300.75 300.80	292 292	340 345
300.85	292	351
300.90	292	357
300.95	292	363
301.00	292	369

Pro Hydro23141.00 Proposed Conditions 2-yr Storm
NOAA 24-hr A 2-year Storm Rainfall=3.28"Prepared by Pare CorporationPrinted 3/15/2024HydroCAD® 10.10-5a s/n 10894 © 2020 HydroCAD Software Solutions LLCPage 35

Summary for Pond 5P: UGIS-3

Inflow Area =	97,637 sf, 5.14% Impervious,	Inflow Depth = 0.41" for 2-year Storm event
Inflow =	0.61 cfs @ 12.30 hrs, Volume=	3,354 cf
Outflow =	0.66 cfs @ 12.47 hrs, Volume=	3,354 cf, Atten= 0%, Lag= 9.8 min
Discarded =	0.04 cfs @ 12.47 hrs, Volume=	1,987 cf
Primary =	0.63 cfs @ 12.47 hrs, Volume=	1,366 cf

Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Peak Elev= 300.91' @ 12.47 hrs Surf.Area= 896 sf Storage= 741 cf

Plug-Flow detention time= 159.5 min calculated for 3,354 cf (100% of inflow) Center-of-Mass det. time= 159.5 min (1,038.2 - 878.8)

Volume	Invert	Avail.Storage	Storage Description
#1A	299.50'	574 cf	16.00'W x 56.00'L x 2.04'H Field A
			1,829 cf Overall - 395 cf Embedded = 1,435 cf x 40.0% Voids
#2A	300.00'	395 cf	Cultec C-100HD x 28 Inside #1
			Effective Size= 32.1"W x 12.0"H => 1.86 sf x 7.50'L = 14.0 cf
			Overall Size= 36.0"W x 12.5"H x 8.00'L with 0.50' Overlap
			Row Length Adjustment= +0.50' x 1.86 sf x 4 rows
		969 cf	Total Available Storage

Storage Group A created with Chamber Wizard

Device	Routing	Invert	Outlet Devices
#1	Discarded	299.50'	1.020 in/hr Exfiltration over Surface area
			Conductivity to Groundwater Elevation = 297.50' Phase-In= 0.01'
#2	Primary	299.50'	12.0" Round Culvert
			L= 3.0' CPP, projecting, no headwall, Ke= 0.900
			Inlet / Outlet Invert= 299.50' / 299.25' S= 0.0833 '/' Cc= 0.900
			n= 0.009 Corrugated PE, smooth interior, Flow Area= 0.79 sf
#3	Device 2	300.80'	0 1 0
			2 End Contraction(s) 1.0' Crest Height

Discarded OutFlow Max=0.04 cfs @ 12.47 hrs HW=300.91' (Free Discharge) **1=Exfiltration** (Controls 0.04 cfs)

Primary OutFlow Max=0.57 cfs @ 12.47 hrs HW=300.91' TW=0.00' (Dynamic Tailwater) -2=Culvert (Passes 0.57 cfs of 2.84 cfs potential flow)

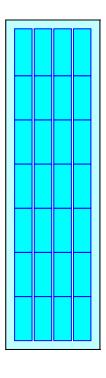
1-3=Sharp-Crested Rectangular Weir (Weir Controls 0.57 cfs @ 1.08 fps)

Pond 5P: UGIS-3 - Chamber Wizard Field A

Chamber Model = Cultec C-100HD (Cultec Contactor® 100HD)

Effective Size= 32.1"W x 12.0"H => 1.86 sf x 7.50'L = 14.0 cf Overall Size= 36.0"W x 12.5"H x 8.00'L with 0.50' Overlap Row Length Adjustment= +0.50' x 1.86 sf x 4 rows

36.0" Wide + 4.0" Spacing = 40.0" C-C Row Spacing


7 Chambers/Row x 7.50' Long +0.50' Row Adjustment = 53.00' Row Length +18.0" End Stone x 2 = 56.00' Base Length 4 Rows x 36.0" Wide + 4.0" Spacing x 3 + 18.0" Side Stone x 2 = 16.00' Base Width 6.0" Stone Base + 12.5" Chamber Height + 6.0" Stone Cover = 2.04' Field Height

28 Chambers x 14.0 cf +0.50' Row Adjustment x 1.86 sf x 4 Rows = 394.6 cf Chamber Storage

1,829.3 cf Field - 394.6 cf Chambers = 1,434.7 cf Stone x 40.0% Voids = 573.9 cf Stone Storage

Chamber Storage + Stone Storage = 968.5 cf = 0.022 afOverall Storage Efficiency = 52.9%Overall System Size = $56.00' \times 16.00' \times 2.04'$

28 Chambers 67.8 cy Field 53.1 cy Stone

Pro Hydro

Prepared by Pare Corporation HydroCAD® 10.10-5a s/n 10894 © 2020 HydroCAD Software Solutions LLC

Stage-Discharge for Pond 5P: UGIS-3

$\begin{array}{c ccc} (0.00) & (0.0) & (0.0) \\ (0.00) & 0.00 & 0.00 \\ (0.00) & 0.00 & 0.00 \\ (0.00) & 0.02 & 0.02 & 0.00 \\ (0.00) & 0.02 & 0.02 & 0.00 \\ (0.00) & 0.02 & 0.02 & 0.00 \\ (0.00) & 0.02 & 0.02 & 0.00 \\ (0.00) & 0.02 & 0.02 & 0.00 \\ (0.00) & 0.02 & 0.02 & 0.00 \\ (0.00) & 0.03 & 0.03 & 0.00 \\ (0.00) & 0.05 & 0.03 & 0.03 & 0.00 \\ (0.00) & 0.05 & 0.03 & 0.03 & 0.00 \\ (0.00) & 0.05 & 0.03 & 0.03 & 0.00 \\ (0.00) & 0.05 & 0.03 & 0.03 & 0.00 \\ (0.00) & 0.05 & 0.03 & 0.03 & 0.00 \\ (0.00) & 0.05 & 0.03 & 0.03 & 0.00 \\ (0.00) & 0.05 & 0.03 & 0.03 & 0.00 \\ (0.00) & 0.05 & 0.04 & 0.52 \\ (0.00) & 0.05 & 0.04 & 0.52 \\ (0.00) & 0.05 & 0.04 & 0.52 \\ (0.00) & 0.05 & 0.04 & 0.52 \\ (0.00) & 0.04 & 0.52 \\ (0.00) & 0.04 & 0.52 \\ (0.00) & 0.04 & 0.52 \\ (0.00) & 0.04 & 0.53 \\ (0.01) & 0.04 & 0.53 \\ (0.01) & 0.04 & 0.43 \\ (0.01) & 0.5 & 0.04 & 0.43 \\ (0.01) & 0.5 & 0.04 & 0.43 \\ (0.01) & 0.5 & 0.04 & 0.43 \\ (0.01) & 0.5 & 0.04 & 0.43 \\ (0.01) & 0.5 & 0.04 & 0.43 \\ (0.01) & 0.5 & 0.04 & 0.43 \\ (0.01) & 0.5 & 0.05 & 0.04 \\ (0.01) & 0.04 & 0.96 \\ (0.01) & 0.04 & 0.96 \\ (0.01) & 0.04 & 0.96 \\ (0.01) & 0.04 & 0.96 \\ (0.01) & 0.04 & 0.96 \\ (0.01) & 0.04 & 0.96 \\ (0.01) & 0.04 & 0.96 \\ (0.01) & 0.04 & 0.96 \\ (0.01) & 0$	Elevation (feet)	Discharge (cfs)	Discarded (cfs)	Primary (cfs)
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				
299.70 0.02 0.02 0.02 0.00 299.75 0.02 0.02 0.00 299.85 0.02 0.02 0.00 299.95 0.03 0.03 0.00 300.00 0.03 0.03 0.00 300.05 0.03 0.03 0.00 300.05 0.03 0.03 0.00 300.10 0.03 0.03 0.00 300.15 0.03 0.03 0.00 300.20 0.03 0.03 0.00 300.25 0.03 0.03 0.00 300.25 0.03 0.03 0.00 300.25 0.03 0.03 0.00 300.35 0.03 0.03 0.00 300.45 0.03 0.03 0.00 300.45 0.03 0.03 0.00 300.55 0.03 0.03 0.00 300.65 0.03 0.03 0.00 300.70 0.03 0.03 0.00 300.75 0.03 0.03 0.00 300.75 0.03 0.03 0.00 300.86 0.03 0.03 0.00 300.85 0.22 0.04 1.8 300.95 1.00 0.04 0.27 301.10 2.79 0.04 2.75 301.10 2.79 0.04 3.27 301.20 3.31 0.04 3.27 301.50 3.70 0.04 3.27 301.50 3.70 <td></td> <td></td> <td></td> <td></td>				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	299.90	0.03	0.03	0.00
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	299.95	0.03		0.00
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	300.00	0.03	0.03	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	300.85	0.22	0.04	0.18
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	300.90	0.56	0.04	0.52
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	300.95		0.04	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				
301.453.640.043.60301.503.700.043.66301.553.760.043.72301.603.820.043.78301.653.880.043.83301.703.940.043.89301.753.990.043.95				
301.503.700.043.66301.553.760.043.72301.603.820.043.78301.653.880.043.83301.703.940.043.89301.753.990.043.95				
301.553.760.043.72301.603.820.043.78301.653.880.043.83301.703.940.043.89301.753.990.043.95				
301.603.820.043.78301.653.880.043.83301.703.940.043.89301.753.990.043.95				
301.653.880.043.83301.703.940.043.89301.753.990.043.95				
301.703.940.043.89301.753.990.043.95				
301.75 3.99 0.04 3.95				
	301.80	4.05	0.05	4.01

Stage-Area-Storage for Pond 5P: UGIS-3

Flowation	Surface	Storage
Elevation (feet)	(sq-ft)	Storage (cubic-feet)
299.50	896	0
299.55	896	18
299.60	896	36
299.65	896	54
299.70	896	72
299.75	896	90
299.80 299.85	896 896	108 125
299.85	896	143
299.95	896	143
300.00	896	179
300.05	896	214
300.10	896	248
300.15	896	282
300.20	896	315
300.25	896	349
300.30	896	382
300.35	896	415 448
300.40 300.45	896 896	440 480
300.50	896	512
300.55	896	543
300.60	896	574
300.65	896	604
300.70	896	633
300.75	896	661
300.80	896	687
300.85	896	712
300.90 300.95	896 896	735 756
301.00	896	730
301.05	896	792
301.10	896	810
301.15	896	828
301.20	896	846
301.25	896	864
301.30	896	882
301.35	896	900
301.40 301.45	896 896	918 936
301.50	896	950 954
301.55	896	969
301.60	896	969
301.65	896	969
301.70	896	969
301.75	896	969
301.80	896	969

	23141.00 Proposed Conditions 2-yr Storm
Pro Hydro	NOAA 24-hr A 2-year Storm Rainfall=3.28"
Prepared by Pare Corporation	Printed 3/15/2024
HydroCAD® 10.10-5a s/n 10894 © 2020 HydroCAD Software	Solutions LLC Page 39

Summary for Pond 6P: Detention Basin-1

Inflow Area	a =	40,597 sf, 84.30% Impervious, Inflow Depth = 2.30" for 2-year Storm event
Inflow	=	3.55 cfs @ 12.13 hrs, Volume= 7,779 cf
Outflow	=	1.02 cfs @ 12.35 hrs, Volume= 7,742 cf, Atten= 71%, Lag= 12.7 min
Primary	=	1.02 cfs @ 12.35 hrs, Volume= 7,742 cf

Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Peak Elev= 297.30' @ 12.35 hrs Surf.Area= 5,278 sf Storage= 3,586 cf

Plug-Flow detention time= 121.9 min calculated for 7,737 cf (99% of inflow) Center-of-Mass det. time= 120.6 min (890.4 - 769.8)

Volume	Invert	Avail.Storage	Storage Description
#1A 296.50' 0 cf		0 cf	41.38'W x 127.56'L x 2.67'H Field A
			14,074 cf Overall - 14,074 cf Embedded = 0 cf x 40.0% Voids
#2A	296.50'	8,991 cf	StormTrap ST1 SingleTrap 2-0 x 54 Inside #1
			Inside= 82.7"W x 24.0"H => 11.84 sf x 14.06'L = 166.5 cf
			Outside= 82.7"W x 32.0"H => 18.39 sf x 14.06'L = 258.6 cf
			54 Chambers in 6 Rows
			41.38' x 126.56' Core + 0.00' x 0.50' Border = 41.38' x 127.56' System
		8,991 cf	Total Available Storage

Storage Group A created with Chamber Wizard

Device	Routing	Invert	Outlet Devices			
#1	Primary	296.50'	12.0" Round Culvert L= 34.8' Ke= 0.900			
	2		Inlet / Outlet Invert= 296.50' / 296.30' S= 0.0057 '/' Cc= 0.900			
			n= 0.009, Flow Area= 0.79 sf			
#2	Device 1	296.50'	5.0" Vert. Orifice/Grate C= 0.600 Limited to weir flow at low heads			
#3	Device 1	296.75'	6.0" Vert. Orifice/Grate C= 0.600 Limited to weir flow at low heads			
#4	Device 1	298.25'	5.0' long Sharp-Crested Rectangular Weir 2 End Contraction(s)			

Primary OutFlow Max=1.02 cfs @ 12.35 hrs HW=297.30' TW=0.00' (Dynamic Tailwater)

-1=Culvert (Passes 1.02 cfs of 1.61 cfs potential flow)

2=Orifice/Grate (Orifice Controls 0.50 cfs @ 3.70 fps)

-3=Orifice/Grate (Orifice Controls 0.52 cfs @ 2.63 fps)

-4=Sharp-Crested Rectangular Weir(Controls 0.00 cfs)

Pond 6P: Detention Basin-1 - Chamber Wizard Field A

Chamber Model = StormTrap ST1 SingleTrap 2-0 (StormTrap ST1 SingleTrap®Type VI) Inside= 82.7"W x 24.0"H => 11.84 sf x 14.06'L = 166.5 cf

Outside= 82.7"W x 32.0"H => 18.39 sf x 14.06'L = 258.6 cf

9 Chambers/Row x 14.06' Long = 126.56' Row Length +6.0" Border x 2 = 127.56' Base Length 6 Rows x 82.7" Wide = 41.38' Base Width 32.0" Chamber Height = 2.67' Field Height

54 Chambers x 166.5 cf = 8,991.0 cf Chamber Storage 54 Chambers x 258.6 cf + 110.3 cf Border = 14,074.4 cf Displacement

Chamber Storage = 8,991.0 cf = 0.206 af Overall Storage Efficiency = 63.9% Overall System Size = 127.56' x 41.38' x 2.67'

54 Chambers (plus border) 521.3 cy Field

Image: state s

Prepared by Pare Corporation
HydroCAD® 10.10-5a s/n 10894 © 2020 HydroCAD Software Solutions L

Stage-Discharge for Pond 6P: Detention Basin-1

$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	Elevation	Primary	Elevation	Primary	Elevation	Primary
296.52 0.00 297.56 1.29 298.56 3.73 296.56 0.01 297.56 1.31 298.63 3.75 296.58 0.02 297.60 1.35 298.62 3.80 296.66 0.03 297.62 1.37 298.64 3.82 296.62 0.04 297.64 1.39 298.66 3.85 296.64 0.05 297.66 1.41 298.72 3.92 296.70 0.10 297.72 1.46 298.74 3.94 296.72 0.12 297.74 1.48 298.73 3.92 296.70 0.10 297.72 1.46 298.74 3.94 296.76 0.16 297.76 1.53 298.80 4.01 296.76 0.16 297.78 1.51 298.80 4.01 296.80 0.20 297.82 1.55 298.84 4.05 296.80 0.20 297.86 1.58 298.86 4.07 296.86 0.29 297.86 1.58 298.86 4.07 296.86 0.29 297.86 1.58 298.94 4.16 296.96 0.36 297.92 1.63 298.94 4.16 296.96 0.42 297.96 1.66 298.94 4.16 296.96 0.45 297.98 1.68 299.00 4.22 296.96 0.45 297.98 1.68 299.90 4.22 296.96 0.45 2	(feet)	(cfs)	(feet)	(cfs)	(feet)	(cfs)
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	296.50					
$\begin{array}{c c c c c c c c c c c c c c c c c c c $						
$\begin{array}{c c c c c c c c c c c c c c c c c c c $						
$\begin{array}{c c c c c c c c c c c c c c c c c c c $						
$\begin{array}{c c c c c c c c c c c c c c c c c c c $						
$\begin{array}{c c c c c c c c c c c c c c c c c c c $						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						
296.70 0.10 297.72 1.46 298.74 3.94 296.72 0.12 297.74 1.48 298.76 3.96 296.74 0.14 297.76 1.50 298.78 3.98 296.76 0.16 297.78 1.51 298.80 4.01 296.78 0.18 297.80 1.53 298.82 4.03 296.80 0.20 297.82 1.55 298.84 4.05 296.82 0.23 297.84 1.56 298.86 4.07 296.84 0.26 297.86 1.58 298.88 4.09 296.86 0.29 297.88 1.60 298.90 4.12 296.86 0.29 297.88 1.60 298.92 4.14 296.90 0.36 297.92 1.63 298.94 4.16 296.92 0.38 297.94 1.65 298.96 4.18 296.94 0.42 297.96 1.66 298.98 4.20 296.96 0.45 297.98 1.68 299.02 4.24 297.00 0.52 298.02 1.71 299.04 4.26 297.02 0.56 298.04 1.72 299.06 4.29 297.04 0.59 298.06 1.74 299.16 4.33 297.10 0.71 298.16 1.77 299.12 4.35 297.10 0.71 298.16 1.87 299.16 4.39 297.72 0.92 2						
296.72 0.12 297.74 1.48 298.76 3.96 296.74 0.14 297.76 1.50 298.78 3.98 296.76 0.16 297.78 1.51 298.80 4.01 296.78 0.18 297.80 1.53 298.82 4.03 296.80 0.20 297.82 1.55 298.84 4.05 296.82 0.23 297.84 1.56 298.86 4.07 296.84 0.26 297.86 1.58 298.88 4.09 296.86 0.29 297.88 1.60 298.90 4.12 296.86 0.29 297.88 1.60 298.92 4.14 296.90 0.36 297.92 1.63 298.94 4.16 296.92 0.38 297.94 1.65 298.96 4.18 296.94 0.42 297.96 1.66 298.98 4.20 296.96 0.45 297.98 1.68 299.00 4.22 296.96 0.45 297.98 1.68 299.00 4.22 296.96 0.45 297.98 1.68 299.00 4.22 297.00 0.52 298.06 1.71 299.04 4.26 297.00 0.52 298.06 1.74 299.06 4.29 297.04 0.59 298.06 1.74 299.06 4.33 297.08 0.67 298.16 1.81 1.33 297.10 0.71 298.16 1						
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						
$\begin{array}{c c c c c c c c c c c c c c c c c c c $						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	297.04					
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	297.06			1.75		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	297.08	0.67	298.10	1.77	299.12	4.35
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	297.10	0.71	298.12	1.78	299.14	4.37
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	297.12	0.74	298.14	1.79	299.16	4.39
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						
297.341.07298.362.54297.361.10298.382.72297.381.12298.402.92297.401.14298.423.12297.421.17298.443.34297.441.19298.463.57297.461.21298.483.63297.481.23298.503.66						
297.361.10298.382.72297.381.12298.402.92297.401.14298.423.12297.421.17298.443.34297.441.19298.463.57297.461.21298.483.63297.481.23298.503.66						
297.381.12298.402.92297.401.14298.423.12297.421.17298.443.34297.441.19298.463.57297.461.21298.483.63297.481.23298.503.66						
297.401.14298.423.12297.421.17298.443.34297.441.19298.463.57297.461.21298.483.63297.481.23298.503.66						
297.421.17298.443.34297.441.19298.463.57297.461.21298.483.63297.481.23298.503.66						
297.441.19298.463.57297.461.21298.483.63297.481.23298.503.66						
297.461.21298.483.63297.481.23298.503.66						
297.48 1.23 298.50 3.66						
	297.50	1.25	298.52	3.68		
					l	

Prepared by Pare Corporation
HydroCAD® 10.10-5a s/n 10894 © 2020 HydroCAD Software Solutions I

Stage-Area-Storage for Pond 6P: Detention Basin-1

$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	Elevation	Storage	Elevation	Storage	Elevation	Storage
286.5290297.544.675298.668.991296.54180297.564.765298.688.991296.56270297.584.855298.608.991296.60450297.625.035298.648.991296.62533297.645.125298.668.991296.66719297.665.215298.688.991296.66719297.705.395298.708.991296.72989297.725.485298.748.991296.741.079297.765.754298.808.991296.751.169297.785.754298.808.991296.761.169297.885.844298.788.991296.761.499297.846.024298.868.991296.761.499297.846.024298.868.991296.761.499297.866.114298.888.991296.801.349297.866.144298.868.991296.811.708297.906.294298.908.991296.921.888297.946.474298.968.991296.941.978297.926.384299.008.991296.951.678298.006.713299.068.991296.962.068297.986.653299.008.991297.002.248298.006.713299.108.991297.042.4282		<u> </u>				
286.54 180 297.56 4,765 298.58 8,991 296.56 270 297.58 4,855 298.60 8,991 296.58 360 297.60 4,945 298.62 8,991 296.60 450 297.64 5,125 298.66 8,991 296.64 629 297.66 5,215 298.66 8,991 296.68 809 297.72 5,485 298.74 8,991 296.70 899 297.74 5,574 298.76 8,991 296.74 1,079 297.78 5,754 298.78 8,991 296.76 1,169 297.78 5,754 298.80 8,991 296.76 1,259 297.82 5,934 298.84 8,991 296.76 1,252 297.86 6,114 298.86 8,991 296.80 1,349 297.86 6,114 298.86 8,991 296.84 1,618 297.99 6,294 298.90 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td></td<>						
286.56 270 297.58 4.855 298.60 8.991 296.58 360 297.60 4.945 298.62 8.991 296.60 450 297.64 5.125 298.64 8.991 296.64 629 297.66 5.215 298.68 8.991 296.66 719 297.70 5.395 298.70 8.991 296.70 899 297.72 5.485 298.74 8.991 296.72 989 297.74 5.574 298.78 8.991 296.76 1.169 297.82 5.934 298.80 8.991 296.76 1.499 297.82 5.934 298.86 8.991 296.80 1.349 297.86 6.114 298.86 8.991 296.84 1.528 297.86 6.144 298.92 8.991 296.86 1.618 297.99 6.244 298.94 8.991 296.90 1.978 297.96 6.563 298.94 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td></td<>						
296.58 360 297.60 4.945 298.62 8.991 296.60 450 297.62 5.035 298.64 8.991 296.64 629 297.66 5.215 298.68 8.991 296.66 719 297.70 5.395 298.70 8.991 296.68 809 297.70 5.395 298.72 8.991 296.72 989 297.74 5.574 298.76 8.991 296.74 1.079 297.76 5.664 298.78 8.991 296.76 1.169 297.78 5.754 298.80 8.991 296.78 1.259 297.80 5.844 298.82 8.991 296.80 1.349 297.82 5.934 298.86 8.991 296.80 1.618 297.92 6.384 298.92 8.991 296.86 1.618 297.92 6.384 298.94 8.991 296.92 1.888 297.92 6.384 298.94 <						
296.60450297.62 5.035 298.64 8.991 296.62539297.66 5.125 298.68 8.991 296.64629297.66 5.215 298.68 8.991 296.66719297.76 5.395 298.72 8.991 296.70899297.70 5.395 298.74 8.991 296.72989297.74 5.574 298.76 8.991 296.741.079297.76 5.664 298.78 8.991 296.761,169297.78 5.754 298.84 8.991 296.761,349297.82 5.934 298.84 8.991 296.801.349297.84 6.024 298.86 8.991 296.811,618297.90 6.294 298.90 8.991 296.861,708297.90 6.294 298.92 8.991 296.901,798297.92 6.384 296.94 8.991 296.921,888297.94 6.474 298.96 8.991 296.941.978297.96 6.563 299.00 8.991 296.952,388298.04 6.991 299.02 8.991 296.962.0682.97.98 6.653 299.00 8.991 297.002,248298.067.013299.06 8.991 297.012,637298.14 7.373 299.16 8.991 297.022,338298.04 7.942 8.991 297.042,428298.30 7.942 <						
296.62539297.645.125298.668.991296.64629297.665.215298.708.991296.66719297.705.395298.728.991296.68809297.705.395298.728.991296.70899297.725.485298.748.991296.72989297.765.664298.788.991296.741.079297.765.664298.788.991296.751.259297.805.844298.828.991296.801.349297.825.934298.848.991296.801.349297.846.024298.868.991296.841.528297.866.114298.888.991296.851.618297.906.294298.928.991296.861.618297.926.384298.948.991296.901.798297.946.474298.968.991296.921.888297.946.653299.008.991296.941.978297.966.563299.008.991296.952.158298.067.013299.068.991297.002.248298.067.013299.108.991297.022.338298.046.923299.108.991297.042.428298.107.193299.108.991297.122.787298.167.463299.148.991297.142.967						
296 64629297.665.215298.688.991296 66719297.685.305298.708.991296 70899297.705.395298.728.991296 70899297.745.574298.768.991296 72989297.745.574298.768.991296 741,079297.765.664298.788.991296 761.169297.785.754298.808.991296 761,259297.805.844298.828.991296 821,349297.825.934298.848.991296 821,618297.866.114298.888.991296 841,528297.906.294298.908.991296 851,708297.926.384298.948.991296 901,798297.926.364298.948.991296 921,888297.946.474298.968.991296 941,978297.966.563299.008.991296 952,158298.006.743299.028.991297.002,248298.067.013299.068.991297.022,338298.046.921299.128.991297.042,428298.067.103299.108.991297.102,677298.187.552297.148.991297.122,787298.147.373299.148.991297.223,237 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						
296.68809297.70 5.395 298.72 8.991 296.70899297.72 5.485 298.74 8.991 296.72989297.74 5.574 298.76 8.991 296.741.079297.76 5.664 298.78 8.991 296.761.169297.78 5.754 298.80 8.991 296.761.259297.80 5.844 298.82 8.991 296.801.349297.82 5.934 298.84 8.991 296.821.439297.86 6.114 298.86 8.991 296.841.528297.86 6.114 298.88 8.991 296.861.618297.90 6.294 298.92 8.991 296.901.798297.92 6.384 298.94 8.991 296.921.888297.94 6.474 298.96 8.991 296.941.978297.96 6.563 298.98 8.991 296.952.158298.00 6.743 299.00 8.991 296.962.068297.98 6.653 299.00 8.991 297.002.248298.06 7.013 299.10 8.991 297.042.428298.06 7.103 299.10 8.991 297.052.607298.12 7.283 299.10 8.991 297.102.607298.14 7.373 299.16 8.991 297.122.787298.16 7.462 299.14 8.991 297.162.967298.18						
296.70899297.72 5.485 298.74 8.991 296.72989297.74 5.574 298.76 8.991 296.741.079297.76 5.664 298.78 8.991 296.761.169297.78 5.754 298.80 8.991 296.761.259297.80 5.844 298.82 8.991 296.801.349297.82 5.934 298.84 8.991 296.821.439297.84 6.024 298.86 8.991 296.841.528297.86 6.114 298.88 8.991 296.851.618297.90 6.294 298.90 8.991 296.861.618297.90 6.294 298.92 8.991 296.901.798297.92 6.384 298.94 8.991 296.921.888297.94 6.474 298.96 8.991 296.941.978297.96 6.563 298.98 8.991 296.962.0682.0782.98.00 6.743 299.02 8.991 296.962.0682.97.93 6.653 299.04 8.991 297.002.248298.04 6.923 299.06 8.991 297.022.338298.04 6.923 299.06 8.991 297.042.428298.067.013299.10 8.991 297.052.517298.167.642297.10 8.991 297.122.787298.167.642299.16 8.991 297.243.327 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>						
296.72989297.745.574298.768.991296.741,079297.765,664298.788,991296.761,169297.785,754298.808,991296.781,259297.805,844298.828,991296.801,349297.825,934298.848,991296.821,439297.846,024298.868,991296.841,528297.866,114298.888,991296.861,618297.966,384298.928,991296.881,708297.926,384298.928,991296.901,78297.966,563298.928,991296.921,888297.946,474298.968,991296.941,978297.966,563299.008,991296.962,068297.986,653299.008,991297.022,338298.046,923299.068,991297.042,428298.067,013299.068,991297.052,607298.127,283299.108,991297.102,697298.127,323299.148,991297.122,787298.147,373299.168,991297.142,877298.147,373299.168,991297.122,767298.187,552297.183,506298.308,092297.233,686298.348,362297.323,666						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						
296.781,259297.805,844298.828,991296.801,349297.825,934298.848,991296.821,439297.866,024298.868,991296.841,528297.866,114298.888,991296.861,618297.866,204298.908,991296.861,708297.906,294298.928,991296.901,798297.926,384298.948,991296.921,888297.946,474298.968,991296.941,978297.966,653299.008,991296.962,068297.986,653299.008,991296.982,158298.006,743299.028,991297.002,248298.046,923299.068,991297.042,428298.067,103299.088,991297.052,517298.087,103299.108,991297.062,517298.127,283299.148,991297.102,697298.127,373299.148,991297.142,877298.167,463299.168,991297.243,327298.267,912297.263,417298.267,912297.303,596298.308,092297.323,686298.348,272297.343,776298.368,362297.363,866298.448,721297.444,226 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>						
296.801,349297.825,934298.848,991296.821,439297.846,024298.868,991296.841,528297.866,114298.868,991296.841,618297.886,204298.908,991296.851,618297.866,294298.928,991296.861,618297.906,294298.928,991296.901,798297.926,384298.948,991296.921,888297.946,474298.968,991296.941,978297.966,653298.988,991296.962,068297.986,653299.008,991296.982,158298.006,743299.028,991297.002,248298.026,833299.048,991297.022,338298.046,923299.068,991297.042,428298.067,013299.108,991297.052,607298.107,103299.108,991297.102,697298.127,283299.148,991297.122,787298.147,373299.168,991297.142,967298.187,552297.183,057298.207,642297.223,237298.247,8227,732297.223,237298.267,912297.243,3506298.308,092297.303,596298.348,272297.34<						
296.821,439297.84 $6,024$ 298.86 $8,991$ 296.841,528297.86 $6,114$ 298.88 $8,991$ 296.861,618297.80 $6,204$ 298.90 $8,991$ 296.861,708297.90 $6,294$ 298.92 $8,991$ 296.901,798297.92 $6,384$ 298.94 $8,991$ 296.921,888297.94 $6,474$ 298.96 $8,991$ 296.941,978297.96 $6,653$ 298.98 $8,991$ 296.962,068297.96 $6,653$ 299.00 $8,991$ 296.982,158298.00 $6,743$ 299.02 $8,991$ 297.002,248298.02 $6,833$ 299.04 $8,991$ 297.012,428298.06 $7,013$ 299.08 $8,991$ 297.022,338298.06 $7,013$ 299.08 $8,991$ 297.032,607298.12 $7,283$ 299.10 $8,991$ 297.102,697298.12 $7,283$ 299.14 $8,991$ 297.122,787298.14 $7,373$ 299.14 $8,991$ 297.142,877298.20 $7,642$ 297.22 $3,237$ 298.24 $7,822$ 297.243,327298.28 $8,002$ 297.32 $3,666$ 298.30 $8,992$ 297.323,666298.30 $8,992$ 297.32 $3,666$ 298.34 $8,722$ 297.343,776298.36 $8,362$ 297.36 $3,666$ 298.40 $8,541$ 297.4						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						
297.14 $2,877$ 298.16 $7,463$ 297.16 $2,967$ 298.18 $7,552$ 297.18 $3,057$ 298.20 $7,642$ 297.20 $3,147$ 298.22 $7,732$ 297.22 $3,237$ 298.24 $7,822$ 297.24 $3,327$ 298.26 $7,912$ 297.26 $3,417$ 298.28 $8,002$ 297.28 $3,506$ 298.30 $8,092$ 297.30 $3,596$ 298.32 $8,182$ 297.32 $3,686$ 298.34 $8,272$ 297.34 $3,776$ 298.36 $8,362$ 297.38 $3,956$ 298.40 $8,541$ 297.42 $4,136$ 298.44 $8,721$ 297.44 $4,226$ 298.46 $8,811$ 297.44 $4,226$ 298.48 $8,901$ 297.48 $4,406$ 298.50 $8,991$						
297.16 $2,967$ 298.18 $7,552$ 297.18 $3,057$ 298.20 $7,642$ 297.20 $3,147$ 298.22 $7,732$ 297.22 $3,237$ 298.24 $7,822$ 297.24 $3,327$ 298.26 $7,912$ 297.26 $3,417$ 298.28 $8,002$ 297.28 $3,506$ 298.30 $8,092$ 297.30 $3,596$ 298.32 $8,182$ 297.32 $3,686$ 298.34 $8,272$ 297.34 $3,776$ 298.36 $8,362$ 297.38 $3,956$ 298.48 $8,631$ 297.40 $4,046$ 298.42 $8,631$ 297.42 $4,136$ 298.46 $8,811$ 297.44 $4,226$ 298.46 $8,811$ 297.48 $4,406$ 298.50 $8,991$					299.10	0,991
297.18 $3,057$ 298.20 $7,642$ 297.20 $3,147$ 298.22 $7,732$ 297.22 $3,237$ 298.24 $7,822$ 297.24 $3,327$ 298.26 $7,912$ 297.26 $3,417$ 298.28 $8,002$ 297.28 $3,506$ 298.30 $8,092$ 297.30 $3,596$ 298.32 $8,182$ 297.32 $3,686$ 298.34 $8,272$ 297.34 $3,776$ 298.36 $8,362$ 297.36 $3,866$ 298.38 $8,452$ 297.40 $4,046$ 298.42 $8,631$ 297.42 $4,136$ 298.44 $8,721$ 297.44 $4,226$ 298.46 $8,811$ 297.46 $4,316$ 298.48 $8,901$ 297.48 $4,406$ 298.50 $8,991$						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$						
297.303,596298.328,182297.323,686298.348,272297.343,776298.368,362297.363,866298.388,452297.383,956298.408,541297.404,046298.428,631297.424,136298.448,721297.444,226298.468,811297.464,316298.488,901297.484,406298.508,991						
297.323,686298.348,272297.343,776298.368,362297.363,866298.388,452297.383,956298.408,541297.404,046298.428,631297.424,136298.448,721297.444,226298.468,811297.464,316298.488,901297.484,406298.508,991						
297.343,776298.368,362297.363,866298.388,452297.383,956298.408,541297.404,046298.428,631297.424,136298.448,721297.444,226298.468,811297.464,316298.488,901297.484,406298.508,991						
297.363,866298.388,452297.383,956298.408,541297.404,046298.428,631297.424,136298.448,721297.444,226298.468,811297.464,316298.488,901297.484,406298.508,991						
297.383,956298.408,541297.404,046298.428,631297.424,136298.448,721297.444,226298.468,811297.464,316298.488,901297.484,406298.508,991						
297.404,046298.428,631297.424,136298.448,721297.444,226298.468,811297.464,316298.488,901297.484,406298.508,991						
297.424,136298.448,721297.444,226298.468,811297.464,316298.488,901297.484,406298.508,991						
297.444,226298.468,811297.464,316298.488,901297.484,406298.508,991						
297.464,316298.488,901297.484,406298.508,991						
297.48 4,406 298.50 8,991						
		,				
					l	

Summary for Pond 7P: Detention Basin-2

Inflow Area =	=	52,134 sf,	, 61.96% Impervious,	Inflow Depth = 1.88"	for 2-year Storm event
Inflow =	3	3.48 cfs @	12.13 hrs, Volume=	8,171 cf	
Outflow =	1	1.12 cfs @	12.32 hrs, Volume=	8,126 cf, Atte	n= 68%, Lag= 11.1 min
Primary =	1	1.12 cfs @	12.32 hrs, Volume=	8,126 cf	

Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Peak Elev= 298.23' @ 12.32 hrs Surf.Area= 5,278 sf Storage= 3,303 cf

Plug-Flow detention time= 119.6 min calculated for 8,126 cf (99% of inflow) Center-of-Mass det. time= 116.0 min (895.8 - 779.8)

Volume	Invert	Avail.Storage	Storage Description
#1A	297.50'	0 cf	41.38'W x 127.56'L x 2.67'H Field A
			14,074 cf Overall - 14,074 cf Embedded = 0 cf x 40.0% Voids
#2A	297.50'	8,991 cf	StormTrap ST1 SingleTrap 2-0 x 54 Inside #1
			Inside= 82.7"W x 24.0"H => 11.84 sf x 14.06'L = 166.5 cf
			Outside= 82.7"W x 32.0"H => 18.39 sf x 14.06'L = 258.6 cf
			54 Chambers in 6 Rows
			41.38' x 126.56' Core + 0.00' x 0.50' Border = 41.38' x 127.56' System
		8,991 cf	Total Available Storage

Storage Group A created with Chamber Wizard

Device	Routing	Invert	Outlet Devices
#1	Primary	297.50'	12.0" Round Culvert L= 50.0' Ke= 0.900
	-		Inlet / Outlet Invert= 297.50' / 297.25' S= 0.0050 '/' Cc= 0.900
			n= 0.013, Flow Area= 0.79 sf
#2	Device 1	299.20'	5.0' long Sharp-Crested Rectangular Weir 2 End Contraction(s)
#3	Device 1	297.50'	6.0" Vert. Orifice/Grate C= 0.600 Limited to weir flow at low heads
#4	Device 1	297.75'	6.0" Vert. Orifice/Grate C= 0.600 Limited to weir flow at low heads

Primary OutFlow Max=1.12 cfs @ 12.32 hrs HW=298.23' TW=0.00' (Dynamic Tailwater)

-1=Culvert (Passes 1.12 cfs of 1.28 cfs potential flow)

2=Sharp-Crested Rectangular Weir (Controls 0.00 cfs)

-3=Orifice/Grate (Orifice Controls 0.66 cfs @ 3.35 fps)

-4=Orifice/Grate (Orifice Controls 0.46 cfs @ 2.37 fps)

Pond 7P: Detention Basin-2 - Chamber Wizard Field A

Chamber Model = StormTrap ST1 SingleTrap 2-0 (StormTrap ST1 SingleTrap®Type VI) Inside= 82.7"W x 24.0"H => 11.84 sf x 14.06'L = 166.5 cf

Outside= 82.7"W x 32.0"H => 18.39 sf x 14.06'L = 258.6 cf

9 Chambers/Row x 14.06' Long = 126.56' Row Length +6.0" Border x 2 = 127.56' Base Length 6 Rows x 82.7" Wide = 41.38' Base Width 32.0" Chamber Height = 2.67' Field Height

54 Chambers x 166.5 cf = 8,991.0 cf Chamber Storage 54 Chambers x 258.6 cf + 110.3 cf Border = 14,074.4 cf Displacement

Chamber Storage = 8,991.0 cf = 0.206 af Overall Storage Efficiency = 63.9% Overall System Size = 127.56' x 41.38' x 2.67'

54 Chambers (plus border) 521.3 cy Field

Image: selection of the selection of the

Stage-Discharge for Pond 7P: Detention Basin-2

	.		D ·		D :
Elevation	Primary	Elevation	Primary	Elevation	Primary
(feet)	(cfs)	(feet)	(cfs)	(feet)	(cfs)
297.50 297.52	0.00	298.52 298.54	1.51 1.54	299.54	3.70
297.52	0.00 0.00	298.54	1.54	299.56 299.58	3.73 3.75
297.54	0.00	298.58	1.50	299.60	3.75
297.58	0.01	298.60	1.60	299.62	3.80
297.60	0.02	298.62	1.63	299.62	3.82
297.62	0.03	298.64	1.65	299.66	3.85
297.64	0.04	298.66	1.67	299.68	3.87
297.66	0.07	298.68	1.69	299.70	3.89
297.68	0.09	298.70	1.71	299.72	3.92
297.70	0.11	298.72	1.73	299.74	3.94
297.72	0.13	298.74	1.75	299.76	3.96
297.74	0.16	298.76	1.77	299.78	3.98
297.76	0.18	298.78	1.79	299.80	4.01
297.78	0.21	298.80	1.81	299.82	4.03
297.80	0.24	298.82	1.83	299.84	4.05
297.82	0.27	298.84	1.85	299.86	4.07
297.84	0.31	298.86	1.87	299.88	4.09
297.86	0.35	298.88	1.89	299.90	4.12
297.88	0.39	298.90	1.91	299.92	4.14
297.90	0.43	298.92	1.93	299.94	4.16
297.92	0.47	298.94	1.95	299.96	4.18
297.94	0.51	298.96	1.97	299.98	4.20
297.96	0.56	298.98	1.98	300.00	4.22
297.98	0.60	299.00	2.00	300.02	4.24
298.00	0.64	299.02	2.02	300.04	4.26
298.02	0.68	299.04	2.04	300.06	4.29
298.04	0.73	299.06	2.06	300.08	4.31
298.06	0.77	299.08	2.07	300.10	4.33
298.08 298.10	0.81 0.86	299.10 299.12	2.09 2.11	300.12 300.14	4.35 4.37
298.10	0.80	299.12	2.11	300.14	4.37 4.39
298.12	0.90	299.14	2.12	300.10	4.59
298.16	0.94	299.18	2.14		
298.18	1.02	299.20	2.10		
298.20	1.06	299.22	2.24		
298.22	1.10	299.24	2.34		
298.24	1.13	299.26	2.46		
298.26	1.16	299.28	2.61		
298.28	1.19	299.30	2.77		
298.30	1.22	299.32	2.95		
298.32	1.25	299.34	3.14		
298.34	1.28	299.36	3.34		
298.36	1.31	299.38	3.51		
298.38	1.33	299.40	3.53		
298.40	1.36	299.42	3.56		
298.42	1.39	299.44	3.58		
298.44	1.41	299.46	3.61		
298.46	1.44	299.48	3.63		
298.48	1.46	299.50	3.66		
298.50	1.49	299.52	3.68		
	l	l	I	l	

Prepared by Pare C	ornoration	
i lepaleu by l'ale C		
HvdroCAD® 10.10-5a	s/n 10894 © 2020 Hv	droCAD Software Solutions L

Stage-Area-Storage for Pond 7P: Detention Basin-2

ElevationStorage (tect)ElevationStorage (tect)ElevationStorage (tect)ElevationStorage (tect)297.500298.524.585299.568.991297.5290298.584.675299.568.991297.56270298.584.855299.608.991297.56270298.625.035299.628.991297.60450298.625.035299.668.991297.64629298.665.215299.668.991297.66719298.685.305299.728.991297.70809298.725.485299.748.991297.741.079298.765.664299.788.991297.761.169298.765.664299.788.991297.761.259298.805.844299.828.991297.761.629298.866.114299.868.991297.781.259298.866.144299.868.991297.801.349298.866.014299.868.991297.841.528298.966.653300.008.991297.901.798298.926.334299.948.991297.901.798298.926.333300.048.991297.901.9782.989.066.653300.008.991297.901.9782.99.006.743300.028.991297.902.787299	Elevation	Storage	Elevation	Storage	Elevation	Storage
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$						
297.54180298.564,765299.588,991297.56270298.584,855299.608,991297.60450298.625,035299.648,991297.60450298.645,125299.668,991297.64629298.665,215299.668,991297.68809298.725,485299.708,991297.70899298.725,485299.748,991297.71989298.725,644299.788,991297.72989298.765,664299.788,991297.741,079298.765,664299.788,991297.761,259298.805,844299.828,991297.801,349298.825,934299.848,991297.821,439298.846,124299.908,991297.841,528298.906,294299.908,991297.851,778298.906,234299.948,991297.901,788298.946,474299.968,991297.921,888298.946,474299.968,991297.941,978298.966,563300.008,991297.962,068298.986,653300.008,991297.962,068299.107,193300.168,991297.962,667299.107,193300.168,991298.062,51729						
297.56 270 298.58 4,855 299.60 8,991 297.58 360 298.60 4,945 299.62 8,991 297.62 539 298.64 5,125 299.64 8,991 297.62 539 298.64 5,125 299.68 8,991 297.64 629 298.66 5,215 299.68 8,991 297.66 719 298.72 5,485 299.70 8,991 297.70 899 298.74 5,574 299.76 8,991 297.76 1,169 298.76 5,664 299.78 8,991 297.76 1,169 298.80 5,844 299.80 8,991 297.80 1,349 298.84 6,024 299.86 8,991 297.84 1,528 298.86 6,114 299.82 8,991 297.86 1,618 298.88 6,204 299.92 8,991 297.90 1,788 298.94 6,474 299.96 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td></td<>						
297.58360298.60 4.945 299.62 8.991 297.60450298.625.035299.648.991297.62539298.645.125299.668.991297.64629298.665.215299.688.991297.66719298.685.305299.708.991297.70899298.725.485299.748.991297.72989298.745.574299.768.991297.741.079298.765.664299.788.991297.741.259298.805.844299.828.991297.781.259298.805.844299.828.991297.801.349298.846.024299.868.991297.841.528298.866.114299.868.991297.851.708298.906.294299.928.991297.901.788298.946.474299.968.991297.921.888298.946.474299.968.991297.941.978299.906.743300.028.991297.952.158299.006.743300.028.991297.962.068299.907.103300.108.991297.962.068299.107.133300.108.991298.062.517299.107.133300.168.991298.062.617299.107.462299.368.991298.162.967 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>						
297.60450298.625.035299.648.991297.62539298.665.125299.668.991297.66719298.665.215299.688.991297.66719298.705.395299.728.991297.70899298.745.574299.768.991297.711.079298.765.664299.788.991297.72989298.735.754299.768.991297.741.079298.765.664299.788.991297.761.169298.785.754299.808.991297.781.259298.805.844299.828.991297.811.439298.825.934299.848.991297.821.439298.846.024299.848.991297.841.528298.866.114299.868.991297.851.618298.906.294299.908.991297.901.798298.926.384299.948.991297.921.888298.946.474299.968.991297.941.978298.966.563300.008.991297.952.168299.006.743300.028.991297.962.068299.907.013300.108.991298.002.248299.067.013300.018.991298.012.667299.127.283300.148.991298.102.667						
297.62539298.645.125299.668.991297.64629298.665.215299.688.991297.66719298.685.305299.708.991297.68809298.725.485299.748.991297.70899298.725.485299.748.991297.741.079298.765.664299.788.991297.741.259298.765.664299.788.991297.781.259298.805.844299.828.991297.801.349298.825.934299.868.991297.811.528298.866.114299.888.991297.821.439298.846.024299.868.991297.841.528298.866.144299.868.991297.851.618298.906.294299.928.991297.901.798298.926.384299.948.991297.921.888298.946.474299.968.991297.941.978299.906.653300.008.991297.952.0682.99.067.013300.188.991297.962.0682.99.127.632300.168.991298.062.617299.107.193300.128.991298.062.617299.167.463300.148.991298.122.787299.167.463300.168.991298.122.787<						
297 64629298 665.215299 688.991297 66719298 685.305299 708.991297 70899298 705.395299 728.991297 70899298 725.485299 748.991297 72989298 745.574299 768.991297 741.079298 765.664299 788.991297 761.169298 765.754299 808.991297 781.259298 805.844299 828.991297 821.349298 825.934299 848.991297 841.528298 866.114299 888.991297 861.618298 866.204299 .908.991297 901.798298 826.364299 .948.991297 911.798298 826.363200 .008.991297 921.888298 946.474299.968.991297 941.978298 .966.563209 .948.991297 952.068299.006.743300 .028.991297 962.068299.026.833300 .048.991297 982.158299.067.013300 .068.991298 042.428299.067.013300 .018.991298 042.677299.127.283300 .148.991298 102.697299.127.732298.223.237299.247.822 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>						
297.68809298.705.395299.728.991297.70899298.745.574299.768.991297.711,079298.765.664299.788.991297.761,169298.785.754299.808.991297.771,259298.805.844299.828.991297.781,259298.805.844299.828.991297.801,349298.825.934299.848.991297.821,439298.866.114299.888.991297.841.528298.866.114299.888.991297.861.618298.886.204299.908.991297.901.798298.906.384299.928.991297.921.888298.946.474299.968.991297.962.068298.986.653300.008.991297.962.068298.986.653300.028.991297.962.068299.026.833300.048.991297.982.158299.067.013300.128.991298.002.248299.067.103300.108.991298.062.607299.107.193300.128.991298.062.607299.107.193300.128.991298.062.607299.167.463300.168.991298.102.607299.167.463300.168.991298.122.	297.64		298.66		299.68	8,991
297.70 899 298.72 5.485 299.74 8.991 297.72 998 298.74 5.574 299.76 8.991 297.74 1.079 298.76 5.664 299.78 8.991 297.76 1.169 298.78 5.754 299.80 8.991 297.76 1.169 298.78 5.754 299.80 8.991 297.76 1.349 298.82 5.934 299.84 8.991 297.80 1.349 298.84 6.024 299.86 8.991 297.82 1.439 298.84 6.024 299.90 8.991 297.84 1.528 298.90 6.294 299.92 8.991 297.90 1.798 298.90 6.294 299.92 8.991 297.92 1.888 298.94 6.474 299.96 8.991 297.94 1.978 298.96 6.563 200.08 8.991 297.96 2.168 299.02 6.833 300.04 8.991 297.96 2.168 299.06 7.013 300.10 8.991 298.06 2.517 299.06 7.103 300.10 8.991 298.06 2.667 299.12 7.283 300.14 8.991 298.06 2.667 299.12 7.323 300.14 8.991 298.06 2.667 299.16 7.462 300.14 8.991 298.16 2.967 299.26 7.912 300.14 8.991						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						
297.781,259298.805,844299.828,991297.801,349298.825,934299.848,991297.821,439298.846,024299.868,991297.841,528298.866,114299.888,991297.861,618298.806,294299.908,991297.831,708298.906,294299.928,991297.901,798288.926,384299.948,991297.921,888298.946,474299.968,991297.941,978298.966,653300.008,991297.962,068298.986,653300.008,991297.982,158299.006,743300.028,991298.002,248299.026,833300.048,991298.042,428299.067,103300.088,991298.042,428299.067,103300.108,991298.062,517299.107,193300.128,991298.082,607299.127,283300.148,991298.102,697299.187,552298.142,327299.26298.142,327299.267,912298.263,417299.288,002298.223,237299.247,822298.303,566299.308,092298.343,776299.368,362298.363,666299.368,611298.44<						
297.801,349298.825,934299.848,991297.821,439298.846,024299.868,991297.841,528298.866,114299.888,991297.861,618298.886,204299.908,991297.861,618298.826,384299.928,991297.881,708298.926,384299.948,991297.921,888298.946,474299.968,991297.941,978298.966,653300.008,991297.962,068298.986,653300.028,991297.982,158299.006,743300.028,991298.002,248299.026,833300.048,991298.022,338299.046,923300.068,991298.042,428299.067,013300.128,991298.052,607299.107,193300.128,991298.102,697299.127,283300.148,991298.122,787299.147,373300.168,991298.142,967299.207,64222298.243,237299.267,91222298.243,506299.308,09222298.323,666299.338,45222298.343,776299.368,36222298.353,666299.348,727						
297.821,439 298.84 $6,024$ 299.86 $8,991$ 297.84 1,528 298.86 $6,114$ 299.88 $8,991$ 297.86 1,618 298.88 $6,204$ 299.90 $8,991$ 297.86 1,708 298.90 $6,294$ 299.92 $8,991$ 297.90 1,798 298.92 $6,384$ 299.94 $8,991$ 297.92 1,888 298.94 $6,474$ 299.96 $8,991$ 297.92 1,888 298.96 $6,653$ 300.00 $8,991$ 297.94 1,978 298.96 $6,653$ 300.00 $8,991$ 297.96 $2,068$ 298.98 $6,653$ 300.02 $8,991$ 297.98 $2,158$ 299.02 $6,833$ 300.04 $8,991$ 298.00 $2,248$ 299.02 $6,833$ 300.04 $8,991$ 298.02 $2,338$ 299.04 $6,923$ 300.06 $8,991$ 298.04 $2,428$ 299.06 $7,013$ 300.10 $8,991$ 298.06 $2,607$ 299.12 $7,283$ 300.14 $8,991$ 298.08 $2,607$ 299.12 $7,283$ 300.14 $8,991$ 298.14 $2,877$ 299.14 $7,373$ 300.14 $8,991$ 298.14 $2,967$ 299.14 $7,452$ 298.24 $3,267$ 299.20 $7,642$ 298.24 $3,267$ 299.20 $7,642$ 298.26 $3,417$ 299.26 $7,912$ 298.24 $3,506$ 2						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		1,010		6 294		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			298.98			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	297.98		299.00		300.02	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						
298.14 $2,877$ 299.16 $7,463$ 298.16 $2,967$ 299.18 $7,552$ 298.18 $3,057$ 299.20 $7,642$ 298.20 $3,147$ 299.22 $7,732$ 298.22 $3,237$ 299.24 $7,822$ 298.24 $3,327$ 299.26 $7,912$ 298.26 $3,417$ 299.28 $8,002$ 298.28 $3,506$ 299.30 $8,092$ 298.30 $3,596$ 299.32 $8,182$ 298.32 $3,686$ 299.34 $8,272$ 298.34 $3,776$ 299.36 $8,362$ 298.38 $3,956$ 299.40 $8,541$ 298.40 $4,046$ 299.42 $8,631$ 298.42 $4,136$ 299.44 $8,721$ 298.44 $4,226$ 299.46 $8,811$ 298.48 $4,406$ 299.50 $8,991$						
298.16 $2,967$ 299.18 $7,552$ 298.18 $3,057$ 299.20 $7,642$ 298.20 $3,147$ 299.22 $7,732$ 298.22 $3,237$ 299.24 $7,822$ 298.24 $3,327$ 299.26 $7,912$ 298.26 $3,417$ 299.28 $8,002$ 298.28 $3,506$ 299.30 $8,092$ 298.30 $3,596$ 299.32 $8,182$ 298.32 $3,686$ 299.34 $8,272$ 298.34 $3,776$ 299.36 $8,362$ 298.36 $3,866$ 299.48 $8,452$ 298.38 $3,956$ 299.40 $8,541$ 298.42 $4,136$ 299.44 $8,721$ 298.44 $4,226$ 299.46 $8,811$ 298.46 $4,316$ 299.48 $8,901$ 298.48 $4,406$ 299.50 $8,991$				7,373	300.10	0,991
298.18 $3,057$ 299.20 $7,642$ 298.20 $3,147$ 299.22 $7,732$ 298.22 $3,237$ 299.24 $7,822$ 298.24 $3,327$ 299.26 $7,912$ 298.26 $3,417$ 299.28 $8,002$ 298.28 $3,506$ 299.30 $8,092$ 298.30 $3,596$ 299.32 $8,182$ 298.32 $3,686$ 299.34 $8,272$ 298.34 $3,776$ 299.36 $8,362$ 298.36 $3,866$ 299.38 $8,452$ 298.38 $3,956$ 299.40 $8,541$ 298.40 $4,046$ 299.44 $8,721$ 298.44 $4,226$ 299.46 $8,811$ 298.46 $4,316$ 299.48 $8,901$ 298.48 $4,406$ 299.50 $8,991$						
298.20 $3,147$ 299.22 $7,732$ 298.22 $3,237$ 299.24 $7,822$ 298.24 $3,327$ 299.26 $7,912$ 298.26 $3,417$ 299.28 $8,002$ 298.28 $3,506$ 299.30 $8,092$ 298.30 $3,596$ 299.32 $8,182$ 298.32 $3,686$ 299.34 $8,272$ 298.34 $3,776$ 299.36 $8,362$ 298.36 $3,866$ 299.40 $8,541$ 298.40 $4,046$ 299.44 $8,721$ 298.44 $4,226$ 299.46 $8,811$ 298.46 $4,316$ 299.48 $8,901$ 298.48 $4,406$ 299.50 $8,991$						
298.22 $3,237$ 299.24 $7,822$ 298.24 $3,327$ 299.26 $7,912$ 298.26 $3,417$ 299.28 $8,002$ 298.28 $3,506$ 299.30 $8,092$ 298.30 $3,596$ 299.32 $8,182$ 298.32 $3,686$ 299.34 $8,272$ 298.34 $3,776$ 299.36 $8,362$ 298.36 $3,866$ 299.38 $8,452$ 298.38 $3,956$ 299.40 $8,541$ 298.40 $4,046$ 299.42 $8,631$ 298.44 $4,226$ 299.46 $8,811$ 298.46 $4,316$ 299.48 $8,901$ 298.48 $4,406$ 299.50 $8,991$						
298.24 $3,327$ 299.26 $7,912$ 298.26 $3,417$ 299.28 $8,002$ 298.28 $3,506$ 299.30 $8,092$ 298.30 $3,596$ 299.32 $8,182$ 298.32 $3,686$ 299.34 $8,272$ 298.34 $3,776$ 299.36 $8,362$ 298.36 $3,866$ 299.38 $8,452$ 298.38 $3,956$ 299.40 $8,541$ 298.40 $4,046$ 299.42 $8,631$ 298.42 $4,136$ 299.46 $8,811$ 298.44 $4,226$ 299.48 $8,901$ 298.48 $4,406$ 299.50 $8,991$						
298.283,506299.308,092298.303,596299.328,182298.323,686299.348,272298.343,776299.368,362298.363,866299.388,452298.383,956299.408,541298.404,046299.428,631298.424,136299.448,721298.444,226299.468,811298.464,316299.488,901298.484,406299.508,991			299.26			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	298.26		299.28			
298.323,686299.348,272298.343,776299.368,362298.363,866299.388,452298.383,956299.408,541298.404,046299.428,631298.424,136299.448,721298.444,226299.468,811298.464,316299.488,901298.484,406299.508,991	298.28		299.30			
298.343,776299.368,362298.363,866299.388,452298.383,956299.408,541298.404,046299.428,631298.424,136299.448,721298.444,226299.468,811298.464,316299.488,901298.484,406299.508,991						
298.363,866299.388,452298.383,956299.408,541298.404,046299.428,631298.424,136299.448,721298.444,226299.468,811298.464,316299.488,901298.484,406299.508,991						
298.383,956299.408,541298.404,046299.428,631298.424,136299.448,721298.444,226299.468,811298.464,316299.488,901298.484,406299.508,991						
298.404,046299.428,631298.424,136299.448,721298.444,226299.468,811298.464,316299.488,901298.484,406299.508,991						
298.424,136299.448,721298.444,226299.468,811298.464,316299.488,901298.484,406299.508,991						
298.444,226299.468,811298.464,316299.488,901298.484,406299.508,991						
298.46 4,316 299.48 8,901 298.48 4,406 299.50 8,991						
298.48 4,406 299.50 8,991						
					l	

Summary for Pond 10P: Detention Basin-3

Inflow Are	a =	96,059 sf,	5.22% Impervious,	Inflow Depth = 0.41"	for 2-year Storm event
Inflow	=	0.91 cfs @	12.17 hrs, Volume=	3,278 cf	
Outflow	=	0.59 cfs @	12.31 hrs, Volume=	3,291 cf, Atte	n= 34%, Lag= 8.6 min
Primary	=	0.59 cfs @	12.31 hrs, Volume=	3,291 cf	

Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Peak Elev= 310.65' @ 12.31 hrs Surf.Area= 1,191 sf Storage= 157 cf

Plug-Flow detention time= (not calculated: outflow precedes inflow) Center-of-Mass det. time= 1.4 min (878.9 - 877.5)

Volume	Invert	Avail.Storage	Storage Description
#1A	310.00'	0 cf	20.69'W x 57.58'L x 8.17'H Field A
			9,729 cf Overall - 9,729 cf Embedded = 0 cf x 40.0% Voids
#2A	310.00'	7,512 cf	StormTrap ST1 DoubleTrap 7-0x 12 Inside #1
			Inside= 82.7"W x 84.0"H => 44.52 sf x 14.06'L = 626.0 cf
			Outside= 82.7"W x 98.0"H => 56.32 sf x 14.06'L = 791.9 cf
			3 Rows adjusted for 406.0 cf perimeter wall
			20.69' x 56.25' Core + 0.00' x 0.67' Border = 20.69' x 57.58' System
		7,512 cf	Total Available Storage

Storage Group A created with Chamber Wizard

Device	Routing	Invert	Outlet Devices
#1	Primary	310.00'	12.0" Round Culvert
			L= 200.0' CPP, projecting, no headwall, Ke= 0.900
			Inlet / Outlet Invert= 310.00' / 300.00' S= 0.0500 '/' Cc= 0.900
			n= 0.009 Corrugated PE, smooth interior, Flow Area= 0.79 sf
#2	Device 1	310.00'	6.0" Vert. Orifice/Grate C= 0.600 Limited to weir flow at low heads
#3	Device 1	313.35'	5.0" Vert. Orifice/Grate C= 0.600 Limited to weir flow at low heads
#4	Device 1	316.50'	Custom Weir/Orifice, Cv= 2.62 (C= 3.28)
			Head (feet) 0.00 0.50
			Width (feet) 5.00 5.00

Primary OutFlow Max=0.59 cfs @ 12.31 hrs HW=310.64' TW=300.56' (Dynamic Tailwater)

-1=Culvert (Passes 0.59 cfs of 1.16 cfs potential flow)

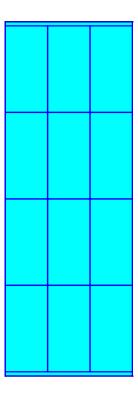
2=Orifice/Grate (Orifice Controls 0.59 cfs @ 3.03 fps)

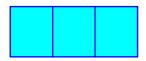
-3=Orifice/Grate (Controls 0.00 cfs)

-4=Custom Weir/Orifice (Controls 0.00 cfs)

Pond 10P: Detention Basin-3 - Chamber Wizard Field A

Chamber Model = StormTrap ST1 DoubleTrap 7-0 (StormTrap ST1 DoubleTrap®Type I/III/VI)


Inside= 82.7"W x 84.0"H => 44.52 sf x 14.06'L = 626.0 cf Outside= 82.7"W x 98.0"H => 56.32 sf x 14.06'L = 791.9 cf 3 Rows adjusted for 406.0 cf perimeter wall


4 Chambers/Row x 14.06' Long = 56.25' Row Length +8.0" Border x 2 = 57.58' Base Length 3 Rows x 82.7" Wide = 20.69' Base Width 98.0" Chamber Height = 8.17' Field Height

20.0 cf Sidewall x 4 x 2 + 41.0 cf Endwall x 3 x 2 = 406.0 cf Perimeter Wall 12 Chambers x 626.0 cf - 406.0 cf Perimeter wall = 7,105.9 cf Chamber Storage 12 Chambers x 791.9 cf + 225.3 cf Border = 9,728.6 cf Displacement

Chamber Storage = 7,105.9 cf = 0.163 af Overall Storage Efficiency = 73.0% Overall System Size = 57.58' x 20.69' x 8.17'

12 Chambers (plus border) 360.3 cy Field

Pro Hydro

Prepared by Pare Corporation	n
HydroCAD® 10.10-5a s/n 10894	© 2020 HydroCAD Software Solutions L

Stage-Discharge for Pond 10P: Detention Basin-3

$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$						
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$						
$\begin{array}{c c c c c c c c c c c c c c c c c c c $						
$\begin{array}{c c c c c c c c c c c c c c c c c c c $						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						
$\begin{array}{c c c c c c c c c c c c c c c c c c c $						
$\begin{array}{c c c c c c c c c c c c c c c c c c c $						
$\begin{array}{c c c c c c c c c c c c c c c c c c c $						
310.35 0.30 312.90 1.54 315.45 3.06 318.00 8.18 310.40 0.36 312.95 1.55 315.50 3.08 318.05 8.20 310.45 0.43 313.00 1.57 315.55 3.10 318.10 8.23 310.50 0.47 313.05 1.58 315.66 3.12 318.15 8.26 310.65 0.50 313.10 1.60 315.65 3.15 318.15 8.26 310.60 0.56 313.15 1.61 315.75 3.19 318.15 8.26 310.80 0.70 313.35 1.66 315.90 3.25 310.85 0.73 313.40 1.69 315.95 3.27 310.90 0.76 313.45 1.72 316.00 3.29 3.35 3.31 3.35 3.31 3.35 3.31 3.35 3.31 3.35 3.31 3.35 3.31 3.35 3.31 3.35 3.31 3.35 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td></t<>						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					310.15	0.20
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						
310.70 0.63 313.25 1.64 315.80 3.21 310.80 0.70 313.30 1.65 315.85 3.23 310.80 0.70 313.35 1.66 315.95 3.27 310.90 0.76 313.45 1.72 316.00 3.29 310.95 0.79 313.50 1.76 316.05 3.31 311.00 0.82 313.55 1.82 316.10 3.33 311.00 0.82 313.65 1.82 316.10 3.33 311.10 0.87 313.65 1.94 316.20 3.37 311.10 0.87 313.65 1.94 316.20 3.37 311.10 0.97 313.85 2.16 316.35 3.41 311.20 0.92 313.75 2.06 316.30 3.41 311.25 0.99 313.80 2.19 316.45 3.43 311.35 0.99 313.90 2.19 316.45 3.47 311.40 1.01 313.95 2.23 316.50 3.49 311.45 1.04 314.00 2.27 316.55 3.69 311.55 1.08 314.10 2.34 316.65 4.50 311.65 1.12 314.20 2.40 316.75 5.63 311.65 1.12 314.20 2.40 316.75 5.63 311.65 1.12 314.45 2.56 317.00 7.61 311.85 1.20 3						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						
310.80 0.70 313.35 1.66 315.95 3.25 310.90 0.76 313.45 1.72 316.00 3.29 310.95 0.79 313.50 1.76 316.05 3.31 311.00 0.82 313.55 1.82 316.10 3.33 311.05 0.85 313.65 1.82 316.10 3.35 311.10 0.87 313.65 1.94 316.20 3.37 311.10 0.87 313.65 1.94 316.20 3.37 311.20 0.92 313.70 2.00 316.25 3.39 311.20 0.92 313.80 2.10 316.35 3.43 311.30 0.97 313.85 2.15 316.40 3.47 311.45 1.04 314.00 2.27 316.55 3.69 311.55 1.06 314.10 2.34 316.65 4.50 311.55 1.08 314.10 2.34 316.65 4.50 311.65 1.12 314.20 2.47 316.85 7.58 311.70 1.14 314.30 2.47 316.85 7.58 311.90 1.21 314.45 2.56 317.00 7.64 311.90 1.22 314.50 2.59 317.05 7.64 311.90 1.21 314.46 2.57 317.25 7.76 312.05 1.27 314.60 2.64 317.10 7.61 311.90 1.22 3						
310.85 0.73 313.40 1.69 315.95 3.27 310.90 0.76 313.45 1.72 316.00 3.29 310.95 0.79 313.50 1.76 316.05 3.31 311.00 0.82 313.55 1.82 316.10 3.33 311.05 0.85 313.60 1.88 316.15 3.35 311.10 0.87 313.65 1.94 316.20 3.37 311.15 0.90 313.70 2.00 316.25 3.39 311.20 0.92 313.75 2.06 316.30 3.41 311.25 0.95 313.80 2.10 316.35 3.43 311.30 0.97 313.85 2.15 316.40 3.45 311.45 0.99 313.90 2.19 316.45 3.47 311.45 1.04 314.05 2.30 316.60 4.05 311.55 1.08 314.10 2.34 316.55 3.69 311.55 1.08 314.10 2.34 316.65 3.69 311.65 1.12 314.20 2.40 316.75 5.63 311.70 1.14 314.25 2.44 316.85 7.01 311.85 1.20 314.40 2.53 316.95 7.58 311.90 1.21 314.45 2.67 317.00 7.61 311.20 1.22 314.45 2.61 317.10 7.61 311.90 1.21 3						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$						
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$						
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						
312.001.25314.552.61317.107.67312.051.27314.602.64317.157.70312.101.29314.652.67317.207.73312.151.30314.702.70317.257.76312.201.32314.752.72317.307.79312.251.34314.802.75317.357.81312.301.35314.852.77317.407.84312.351.37314.902.80317.457.87312.401.39314.952.82317.507.90312.451.40315.002.85317.557.93						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						
312.101.29314.652.67317.207.73312.151.30314.702.70317.257.76312.201.32314.752.72317.307.79312.251.34314.802.75317.357.81312.301.35314.852.77317.407.84312.351.37314.902.80317.457.87312.401.39314.952.82317.507.90312.451.40315.002.85317.557.93						
312.151.30314.702.70317.257.76312.201.32314.752.72317.307.79312.251.34314.802.75317.357.81312.301.35314.852.77317.407.84312.351.37314.902.80317.457.87312.401.39314.952.82317.507.90312.451.40315.002.85317.557.93						
312.201.32314.752.72317.307.79312.251.34314.802.75317.357.81312.301.35314.852.77317.407.84312.351.37314.902.80317.457.87312.401.39314.952.82317.507.90312.451.40315.002.85317.557.93						
312.251.34314.802.75317.357.81312.301.35314.852.77317.407.84312.351.37314.902.80317.457.87312.401.39314.952.82317.507.90312.451.40315.002.85317.557.93						
312.301.35314.852.77317.407.84312.351.37314.902.80317.457.87312.401.39314.952.82317.507.90312.451.40315.002.85317.557.93						
312.351.37314.902.80317.457.87312.401.39314.952.82317.507.90312.451.40315.002.85317.557.93						
312.401.39314.952.82317.507.90312.451.40315.002.85317.557.93						
312.45 1.40 315.00 2.85 317.55 7.93						
		l				

Stage-Area-Storage for Pond 10P: Detention Basin-3

	01		01
Elevation	Storage	Elevation	Storage
(feet)	(cubic-feet)	(feet)	(cubic-feet)
310.00 310.10	0 0	315.10 315.20	4,936 5,044
310.20	0	315.30	5,151
310.20	0	315.40	5,258
310.40	0	315.50	5,366
310.50	0	315.60	5,473
310.60	107	315.70	5,580
310.70	215	315.80	5,688
310.80	322	315.90	5,795
310.90	429	316.00	5,902
311.00	537	316.10	6,010
311.10	644	316.20	6,117
311.20	751	316.30	6,224
311.30	859	316.40	6,332
311.40	966	316.50	6,439
311.50	1,073	316.60	6,546
311.60	1,180	316.70	6,653
311.70	1,288	316.80	6,761
311.80	1,395	316.90	6,868
311.90	1,502	317.00	6,975
312.00	1,610	317.10 317.20	7,083
312.10 312.20	1,717 1,824	317.30	7,190 7,297
312.20	1,932	317.30	7,297
312.40	2,039	317.50	7,512
312.50	2,000	317.60	7,512
312.60	2,140	317.70	7,512
312.70	2,361	317.80	7,512
312.80	2,468	317.90	7,512
312.90	2,576	318.00	7,512
313.00	2,683	318.10	7,512
313.10	2,790		
313.20	2,897		
313.30	3,005		
313.40	3,112		
313.50	3,219		
313.60	3,327		
313.70	3,434		
313.80 313.90	3,541 3,649		
314.00	3,756		
314.10	3,863		
314.20	3,971		
314.30	4,078		
314.40	4,185		
314.50	4,293		
314.60	4,400		
314.70	4,507		
314.80	4,614		
314.90	4,722		
315.00	4,829		
		l	

Summary for Link 1L: DP-1 Mass-DOT West

 Inflow Area =
 1,142 sf, 60.31% Impervious, Inflow Depth =
 1.68" for 2-year Storm event

 Inflow =
 0.07 cfs @
 12.13 hrs, Volume=
 159 cf

 Primary =
 0.07 cfs @
 12.13 hrs, Volume=
 159 cf, Atten= 0%, Lag= 0.0 min

Summary for Link 2L: DP-2 Mass-DOT East

 Inflow Area =
 195,291 sf, 38.40% Impervious, Inflow Depth > 1.11" for 2-year Storm event

 Inflow =
 2.77 cfs @ 12.46 hrs, Volume=
 18,058 cf

 Primary =
 2.77 cfs @ 12.46 hrs, Volume=
 18,058 cf, Atten= 0%, Lag= 0.0 min

Summary for Link 3L: DP-3 Bank Parking Lot

Primary = 0.00 cfs @ 0.00 hrs, Volume= 0 cf

	23141.00 Proposed Conditions 2-yr Storm
Pro Hydro	NOAA 24-hr A 2-year Storm Rainfall=3.28"
Prepared by Pare Corporation	Printed 3/15/2024
HydroCAD® 10.10-5a s/n 10894 © 2020 HydroCAD Software	Solutions LLC Page 54

Summary for Link 4L: _placeholder

 Inflow Area =
 196,433 sf, 38.52% Impervious, Inflow Depth > 1.11" for 2-year Storm event

 Inflow =
 2.78 cfs @ 12.46 hrs, Volume=
 18,217 cf

 Primary =
 2.78 cfs @ 12.46 hrs, Volume=
 18,217 cf, Atten= 0%, Lag= 0.0 min

	23141.00 Proposed Conditions 2-yr Storm
Pro Hydro	NOAA 24-hr A 2-year Storm Rainfall=3.28"
Prepared by Pare Corporation	Printed 3/15/2024
HydroCAD® 10.10-5a s/n 10894 © 2020 HydroCAD Software	Solutions LLC Page 55

Summary for Link 8L: center CB

Inflow Are	ea =	55,328 sf, 61.79% Impervious, Inflow Depth > 1.86" for 2-year Storm event
Inflow	=	1.20 cfs @ 12.26 hrs, Volume= 8,571 cf
Primary	=	1.20 cfs @ 12.26 hrs, Volume= 8,571 cf, Atten= 0%, Lag= 0.0 min

	23141.00 Proposed Conditions 2-yr Storm
Pro Hydro	NOAA 24-hr A 2-year Storm Rainfall=3.28"
Prepared by Pare Corporation	Printed 3/15/2024
HydroCAD® 10.10-5a s/n 10894 © 2020 HydroCAD Software	Solutions LLC Page 56

Summary for Link 9L: east CB

Inflow Are	ea =	139,963 sf, 29.15% Impervious, Inflow Depth > 0.81" for 2-year Storm event
Inflow	=	1.65 cfs @ 12.46 hrs, Volume= 9,487 cf
Primary	=	1.65 cfs @ 12.46 hrs, Volume= 9,487 cf, Atten= 0%, Lag= 0.0 min

Pro Hydro Prepared by Pare Corporation <u>HydroCAD® 10.10-5a s/n 10894 © 2020 Hyd</u>	23141.00 Proposed Conditions 10, 25, 100-yr Storm NOAA 24-hr A 10-year Storm Rainfall=5.02" Printed 3/15/2024 roCAD Software Solutions LLC Page 1	
Time span=0.00-72.00 hrs, dt=0.05 hrs, 1441 points Runoff by SCS TR-20 method, UH=SCS, Weighted-CN Reach routing by Dyn-Stor-Ind method - Pond routing by Dyn-Stor-Ind method		
SubcatchmentPDA-1: Subcat PDA-1	Runoff Area=1,142 sf 60.31% Impervious Runoff Depth=3.19" Tc=6.0 min CN=83 Runoff=0.14 cfs 304 cf	
SubcatchmentPDA-2A: Subcat PDA-2A	Runoff Area=3,194 sf 58.96% Impervious Runoff Depth=3.19" Tc=6.0 min CN=83 Runoff=0.39 cfs 850 cf	
SubcatchmentPDA-2B: Subcat PDA-2B	Runoff Area=1,730 sf 90.08% Impervious Runoff Depth=4.33" Tc=6.0 min CN=94 Runoff=0.26 cfs 624 cf	
SubcatchmentPDA-2C: Subcat PDA-2C	Runoff Area=5,944 sf 32.21% Impervious Runoff Depth=2.30" Tc=6.0 min CN=73 Runoff=0.53 cfs 1,137 cf	
SubcatchmentPDA-2D: Subcat PDA-2D	Runoff Area=2,329 sf 14.02% Impervious Runoff Depth=1.74" Tc=6.0 min CN=66 Runoff=0.16 cfs 338 cf	
SubcatchmentPDA-2E: Subcat PDA-2E	Runoff Area=3,332 sf 100.00% Impervious Runoff Depth=4.78" Tc=6.0 min CN=98 Runoff=0.52 cfs 1,328 cf	
SubcatchmentPDA-2F: Subcat PDA-2F	Runoff Area=4,072 sf 90.43% Impervious Runoff Depth=4.33" Tc=6.0 min CN=94 Runoff=0.62 cfs 1,469 cf	
SubcatchmentPDA-2G: Subcat PDA-2G	Runoff Area=3,190 sf 65.14% Impervious Runoff Depth=3.39" Tc=6.0 min CN=85 Runoff=0.41 cfs 900 cf	
SubcatchmentPDA-2H: Subcat PDA-2H	Runoff Area=3,620 sf 89.40% Impervious Runoff Depth=4.33" Tc=6.0 min CN=94 Runoff=0.55 cfs 1,306 cf	
SubcatchmentPDA-2I: Subcat PDA-2I	Runoff Area=2,986 sf 1.23% Impervious Runoff Depth=1.38" Tc=6.0 min CN=61 Runoff=0.16 cfs 344 cf	
SubcatchmentPDA-2J: Subcat PDA-2J	Runoff Area=14,841 sf 89.63% Impervious Runoff Depth=4.33" Tc=6.0 min CN=94 Runoff=2.24 cfs 5,352 cf	
SubcatchmentPDA-2K: Subcat PDA-2K	Runoff Area=5,283 sf 8.23% Impervious Runoff Depth=1.59" Tc=6.0 min CN=64 Runoff=0.32 cfs 702 cf	
SubcatchmentPDA-2L: Subcat PDA-2L	Runoff Area=13,395 sf 87.78% Impervious Runoff Depth=4.22" Tc=6.0 min CN=93 Runoff=2.00 cfs 4,708 cf	
SubcatchmentPDA-2M: Subcat PDA-2M	Runoff Area=7,503 sf 65.16% Impervious Runoff Depth=3.39" Tc=6.0 min CN=85 Runoff=0.96 cfs 2,117 cf	
SubcatchmentPDA-2N: Subcat PDA-2N	Runoff Area=4,661 sf 0.00% Impervious Runoff Depth=1.38" Tc=6.0 min CN=61 Runoff=0.24 cfs 537 cf	
SubcatchmentPDA-20: Subcat PDA-20	Runoff Area=59,192 sf 0.00% Impervious Runoff Depth=1.05" Flow Length=391' Tc=9.3 min CN=56 Runoff=1.87 cfs 5,189 cf	

Pro Hydro Prepared by Pare Corporation HydroCAD® 10.10-5a s/n 10894 © 2020 Hydro	23141.00 Proposed Conditions 10, 25, 100-yr Storm NOAA 24-hr A 10-year Storm Rainfall=5.02" Printed 3/15/2024 DCAD Software Solutions LLC Page 2
SubcatchmentPDA-2P: Subcat PDA-2P	Runoff Area=14,672 sf 0.00% Impervious Runoff Depth=0.99" Tc=6.0 min CN=55 Runoff=0.51 cfs 1,210 cf
SubcatchmentPDA-2Q: Subcat PDA-2Q	Runoff Area=22,194 sf 22.59% Impervious Runoff Depth=1.89" Tc=6.0 min CN=68 Runoff=1.64 cfs 3,503 cf
SubcatchmentPDA-2R: Subcat PDA-2R	Runoff Area=1,578 sf 0.00% Impervious Runoff Depth=1.38" Tc=6.0 min CN=61 Runoff=0.08 cfs 182 cf
SubcatchmentPDA-ROOF1:Subcat	Runoff Area=7,065 sf 99.84% Impervious Runoff Depth=4.78" Tc=6.0 min CN=98 Runoff=1.11 cfs 2,816 cf
SubcatchmentPDA-ROOF2:Subcat	Runoff Area=11,888 sf 99.99% Impervious Runoff Depth=4.78" Tc=6.0 min CN=98 Runoff=1.86 cfs 4,738 cf
SubcatchmentPDA-ROOF3:Subcat	Runoff Area=2,620 sf 99.07% Impervious Runoff Depth=4.78" Tc=6.0 min CN=98 Runoff=0.41 cfs 1,044 cf
Pond 1P: UGIS-1 Discarded	Peak Elev=299.77' Storage=246 cf Inflow=0.24 cfs 537 cf =0.02 cfs 537 cf Primary=0.00 cfs 0 cf Outflow=0.02 cfs 537 cf
Pond 4P: UGIS-2 Discarded=0.01	Peak Elev=300.37' Storage=293 cf Inflow=1.86 cfs 4,738 cf cfs 883 cf Primary=1.82 cfs 3,855 cf Outflow=1.83 cfs 4,738 cf
Pond 5P: UGIS-3 Discarded=0.04 cfs	Peak Elev=300.99' Storage=772 cf Inflow=1.40 cfs 10,095 cf 2,293 cf Primary=1.40 cfs 7,801 cf Outflow=1.44 cfs 10,095 cf
Pond 6P: Detention Basin-1	Peak Elev=297.79' Storage=5,786 cf Inflow=5.77 cfs 13,226 cf Outflow=1.52 cfs 13,188 cf
Pond 7P: Detention Basin-2	Peak Elev=298.73' Storage=5,518 cf Inflow=6.01 cfs 14,191 cf Outflow=1.74 cfs 14,145 cf
Pond 10P: Detention Basin-3	Peak Elev=312.39' Storage=2,026 cf Inflow=3.86 cfs 9,902 cf Outflow=1.38 cfs 9,913 cf
Link 1L: DP-1 Mass-DOT West	Inflow=0.14 cfs 304 cf Primary=0.14 cfs 304 cf
Link 2L: DP-2 Mass-DOT East	Inflow=4.89 cfs 36,608 cf Primary=4.89 cfs 36,608 cf
Link 3L: DP-3 Bank Parking Lot	Primary=0.00 cfs 0 cf
Link 4L: _placeholder	Inflow=5.07 cfs 36,912 cf Primary=5.07 cfs 36,912 cf
Link 8L: center CB	Inflow=1.90 cfs 14,994 cf Primary=1.90 cfs 14,994 cf

Inflow=2.99 cfs 21,613 cf Primary=2.99 cfs 21,613 cf

Total Runoff Area = 196,433 sf Runoff Volume = 40,697 cf Average Runoff Depth = 2.49" 61.48% Pervious = 120,761 sf 38.52% Impervious = 75,671 sf

Pro Hydro Prepared by Pare Corporation HydroCAD® 10.10-5a s/n 10894 © 2020 Hydr	23141.00 Proposed Conditions 10, 25, 100-yr Storm NOAA 24-hr A 25-year Storm Rainfall=6.10" Printed 3/15/2024 roCAD Software Solutions LLC Page 4	
Time span=0.00-72.00 hrs, dt=0.05 hrs, 1441 points Runoff by SCS TR-20 method, UH=SCS, Weighted-CN Reach routing by Dyn-Stor-Ind method - Pond routing by Dyn-Stor-Ind method		
SubcatchmentPDA-1: Subcat PDA-1	Runoff Area=1,142 sf 60.31% Impervious Runoff Depth=4.18" Tc=6.0 min CN=83 Runoff=0.18 cfs 398 cf	
SubcatchmentPDA-2A: Subcat PDA-2A	Runoff Area=3,194 sf 58.96% Impervious Runoff Depth=4.18" Tc=6.0 min CN=83 Runoff=0.50 cfs 1,114 cf	
SubcatchmentPDA-2B: Subcat PDA-2B	Runoff Area=1,730 sf 90.08% Impervious Runoff Depth=5.40" Tc=6.0 min CN=94 Runoff=0.32 cfs 778 cf	
SubcatchmentPDA-2C: Subcat PDA-2C	Runoff Area=5,944 sf 32.21% Impervious Runoff Depth=3.17" Tc=6.0 min CN=73 Runoff=0.73 cfs 1,571 cf	
SubcatchmentPDA-2D: Subcat PDA-2D	Runoff Area=2,329 sf 14.02% Impervious Runoff Depth=2.51" Tc=6.0 min CN=66 Runoff=0.23 cfs 488 cf	
SubcatchmentPDA-2E: Subcat PDA-2E	Runoff Area=3,332 sf 100.00% Impervious Runoff Depth=5.86" Tc=6.0 min CN=98 Runoff=0.64 cfs 1,628 cf	
SubcatchmentPDA-2F: Subcat PDA-2F	Runoff Area=4,072 sf 90.43% Impervious Runoff Depth=5.40" Tc=6.0 min CN=94 Runoff=0.76 cfs 1,831 cf	
SubcatchmentPDA-2G: Subcat PDA-2G	Runoff Area=3,190 sf 65.14% Impervious Runoff Depth=4.40" Tc=6.0 min CN=85 Runoff=0.52 cfs 1,169 cf	
SubcatchmentPDA-2H: Subcat PDA-2H	Runoff Area=3,620 sf 89.40% Impervious Runoff Depth=5.40" Tc=6.0 min CN=94 Runoff=0.67 cfs 1,628 cf	
SubcatchmentPDA-2I: Subcat PDA-2I	Runoff Area=2,986 sf 1.23% Impervious Runoff Depth=2.07" Tc=6.0 min CN=61 Runoff=0.24 cfs 516 cf	
SubcatchmentPDA-2J: Subcat PDA-2J	Runoff Area=14,841 sf 89.63% Impervious Runoff Depth=5.40" Tc=6.0 min CN=94 Runoff=2.76 cfs 6,673 cf	
SubcatchmentPDA-2K: Subcat PDA-2K	Runoff Area=5,283 sf 8.23% Impervious Runoff Depth=2.33" Tc=6.0 min CN=64 Runoff=0.48 cfs 1,028 cf	
SubcatchmentPDA-2L: Subcat PDA-2L	Runoff Area=13,395 sf 87.78% Impervious Runoff Depth=5.28" Tc=6.0 min CN=93 Runoff=2.47 cfs 5,895 cf	
SubcatchmentPDA-2M: Subcat PDA-2M	Runoff Area=7,503 sf 65.16% Impervious Runoff Depth=4.40" Tc=6.0 min CN=85 Runoff=1.23 cfs 2,749 cf	
SubcatchmentPDA-2N: Subcat PDA-2N	Runoff Area=4,661 sf 0.00% Impervious Runoff Depth=2.07" Tc=6.0 min CN=61 Runoff=0.37 cfs 805 cf	
SubcatchmentPDA-20: Subcat PDA-20	Runoff Area=59,192 sf 0.00% Impervious Runoff Depth=1.66" Flow Length=391' Tc=9.3 min CN=56 Runoff=3.14 cfs 8,167 cf	

Pro Hydro Prepared by Pare Corporation HydroCAD® 10.10-5a s/n 10894 © 2020 Hydro	23141.00 Proposed Conditions 10, 25, 100-yr Storm NOAA 24-hr A 25-year Storm Rainfall=6.10" Printed 3/15/2024 DCAD Software Solutions LLC Page 5
SubcatchmentPDA-2P: Subcat PDA-2P	Runoff Area=14,672 sf 0.00% Impervious Runoff Depth=1.58" Tc=6.0 min CN=55 Runoff=0.86 cfs 1,926 cf
SubcatchmentPDA-2Q: Subcat PDA-2Q	Runoff Area=22,194 sf 22.59% Impervious Runoff Depth=2.70" Tc=6.0 min CN=68 Runoff=2.34 cfs 4,990 cf
SubcatchmentPDA-2R: Subcat PDA-2R	Runoff Area=1,578 sf 0.00% Impervious Runoff Depth=2.07" Tc=6.0 min CN=61 Runoff=0.13 cfs 273 cf
SubcatchmentPDA-ROOF1:Subcat	Runoff Area=7,065 sf 99.84% Impervious Runoff Depth=5.86" Tc=6.0 min CN=98 Runoff=1.35 cfs 3,451 cf
SubcatchmentPDA-ROOF2:Subcat	Runoff Area=11,888 sf 99.99% Impervious Runoff Depth=5.86" Tc=6.0 min CN=98 Runoff=2.27 cfs 5,807 cf
SubcatchmentPDA-ROOF3:Subcat	Runoff Area=2,620 sf 99.07% Impervious Runoff Depth=5.86" Tc=6.0 min CN=98 Runoff=0.50 cfs 1,280 cf
Pond 1P: UGIS-1 Discarded	Peak Elev=300.18' Storage=424 cf Inflow=0.37 cfs 805 cf I=0.02 cfs 805 cf Primary=0.00 cfs 0 cf Outflow=0.02 cfs 805 cf
Pond 4P: UGIS-2 Discarded=0.01	Peak Elev=300.53' Storage=314 cf Inflow=2.27 cfs 5,807 cf cfs 918 cf Primary=2.24 cfs 4,888 cf Outflow=2.25 cfs 5,807 cf
Pond 5P: UGIS-3 Discarded=0.04 cfs	Peak Elev=301.06' Storage=796 cf Inflow=2.25 cfs 15,370 cf 2,343 cf Primary=2.21 cfs 13,027 cf Outflow=2.25 cfs 15,370 cf
Pond 6P: Detention Basin-1	Peak Elev=298.10' Storage=7,198 cf Inflow=7.16 cfs 16,705 cf Outflow=1.77 cfs 16,667 cf
Pond 7P: Detention Basin-2	Peak Elev=299.06' Storage=7,016 cf Inflow=7.62 cfs 18,091 cf Outflow=2.06 cfs 18,044 cf
Pond 10P: Detention Basin-3	Peak Elev=313.94' Storage=3,688 cf Inflow=6.17 cfs 15,084 cf Outflow=2.22 cfs 15,098 cf
Link 1L: DP-1 Mass-DOT West	Inflow=0.18 cfs 398 cf Primary=0.18 cfs 398 cf
Link 2L: DP-2 Mass-DOT East	Inflow=6.25 cfs 49,629 cf Primary=6.25 cfs 49,629 cf
Link 3L: DP-3 Bank Parking Lot	Primary=0.00 cfs_0 cf
Link 4L: _placeholder	Inflow=6.30 cfs 50,028 cf Primary=6.30 cfs 50,028 cf
Link 8L: center CB	Inflow=2.27 cfs 19,157 cf Primary=2.27 cfs 19,157 cf

Inflow=4.07 cfs 30,472 cf Primary=4.07 cfs 30,472 cf

Total Runoff Area = 196,433 sf Runoff Volume = 54,165 cf Average Runoff Depth = 3.31" 61.48% Pervious = 120,761 sf 38.52% Impervious = 75,671 sf

Pro Hydro Prepared by Pare Corporation <u>HydroCAD® 10.10-5a s/n 10894 © 2020 Hydro</u>	23141.00 Proposed Conditions 10, 25, 100-yr Storm NOAA 24-hr A 100-year Storm Rainfall=7.77" Printed 3/15/2024 DCAD Software Solutions LLC Page 7	
Time span=0.00-72.00 hrs, dt=0.05 hrs, 1441 points Runoff by SCS TR-20 method, UH=SCS, Weighted-CN Reach routing by Dyn-Stor-Ind method - Pond routing by Dyn-Stor-Ind method		
SubcatchmentPDA-1: Subcat PDA-1	Runoff Area=1,142 sf 60.31% Impervious Runoff Depth=5.76" Tc=6.0 min CN=83 Runoff=0.24 cfs 548 cf	
SubcatchmentPDA-2A: Subcat PDA-2A	Runoff Area=3,194 sf 58.96% Impervious Runoff Depth=5.76" Tc=6.0 min CN=83 Runoff=0.68 cfs 1,532 cf	
SubcatchmentPDA-2B: Subcat PDA-2B	Runoff Area=1,730 sf 90.08% Impervious Runoff Depth=7.05" Tc=6.0 min CN=94 Runoff=0.41 cfs 1,017 cf	
SubcatchmentPDA-2C: Subcat PDA-2C	Runoff Area=5,944 sf 32.21% Impervious Runoff Depth=4.61" Tc=6.0 min CN=73 Runoff=1.05 cfs 2,282 cf	
SubcatchmentPDA-2D: Subcat PDA-2D	Runoff Area=2,329 sf 14.02% Impervious Runoff Depth=3.82" Tc=6.0 min CN=66 Runoff=0.35 cfs 741 cf	
SubcatchmentPDA-2E: Subcat PDA-2E	Runoff Area=3,332 sf 100.00% Impervious Runoff Depth=7.53" Tc=6.0 min CN=98 Runoff=0.81 cfs 2,091 cf	
SubcatchmentPDA-2F: Subcat PDA-2F	Runoff Area=4,072 sf 90.43% Impervious Runoff Depth=7.05" Tc=6.0 min CN=94 Runoff=0.97 cfs 2,393 cf	
SubcatchmentPDA-2G: Subcat PDA-2G	Runoff Area=3,190 sf 65.14% Impervious Runoff Depth=5.99" Tc=6.0 min CN=85 Runoff=0.70 cfs 1,593 cf	
SubcatchmentPDA-2H: Subcat PDA-2H	Runoff Area=3,620 sf 89.40% Impervious Runoff Depth=7.05" Tc=6.0 min CN=94 Runoff=0.87 cfs 2,128 cf	
SubcatchmentPDA-2I: Subcat PDA-2I	Runoff Area=2,986 sf 1.23% Impervious Runoff Depth=3.27" Tc=6.0 min CN=61 Runoff=0.38 cfs 814 cf	
SubcatchmentPDA-2J: Subcat PDA-2J	Runoff Area=14,841 sf 89.63% Impervious Runoff Depth=7.05" Tc=6.0 min CN=94 Runoff=3.55 cfs 8,723 cf	
SubcatchmentPDA-2K: Subcat PDA-2K	Runoff Area=5,283 sf 8.23% Impervious Runoff Depth=3.60" Tc=6.0 min CN=64 Runoff=0.74 cfs 1,584 cf	
SubcatchmentPDA-2L: Subcat PDA-2L	Runoff Area=13,395 sf 87.78% Impervious Runoff Depth=6.93" Tc=6.0 min CN=93 Runoff=3.18 cfs 7,741 cf	
SubcatchmentPDA-2M: Subcat PDA-2M	Runoff Area=7,503 sf 65.16% Impervious Runoff Depth=5.99" Tc=6.0 min CN=85 Runoff=1.64 cfs 3,746 cf	
SubcatchmentPDA-2N: Subcat PDA-2N	Runoff Area=4,661 sf 0.00% Impervious Runoff Depth=3.27" Tc=6.0 min CN=61 Runoff=0.60 cfs 1,270 cf	
SubcatchmentPDA-20: Subcat PDA-20 F	Runoff Area=59,192 sf 0.00% Impervious Runoff Depth=2.73" 'low Length=391' Tc=9.3 min CN=56 Runoff=5.39 cfs 13,484 cf	

Pro Hydro Prepared by Pare Corporation <u>HydroCAD® 10.10-5a s/n 10894 © 2020 Hydr</u>	23141.00 Proposed Conditions 10, 25, 100-yr Storm NOAA 24-hr A 100-year Storm Rainfall=7.77" Printed 3/15/2024 roCAD Software Solutions LLC Page 8
SubcatchmentPDA-2P: Subcat PDA-2P	Runoff Area=14,672 sf 0.00% Impervious Runoff Depth=2.63" Tc=6.0 min CN=55 Runoff=1.49 cfs 3,213 cf
SubcatchmentPDA-2Q: Subcat PDA-2Q	Runoff Area=22,194 sf 22.59% Impervious Runoff Depth=4.04" Tc=6.0 min CN=68 Runoff=3.49 cfs 7,477 cf
SubcatchmentPDA-2R: Subcat PDA-2R	Runoff Area=1,578 sf 0.00% Impervious Runoff Depth=3.27" Tc=6.0 min CN=61 Runoff=0.20 cfs 430 cf
SubcatchmentPDA-ROOF1:Subcat	Runoff Area=7,065 sf 99.84% Impervious Runoff Depth=7.53" Tc=6.0 min CN=98 Runoff=1.72 cfs 4,434 cf
SubcatchmentPDA-ROOF2:Subcat	Runoff Area=11,888 sf 99.99% Impervious Runoff Depth=7.53" Tc=6.0 min CN=98 Runoff=2.89 cfs 7,460 cf
SubcatchmentPDA-ROOF3:Subcat	Runoff Area=2,620 sf 99.07% Impervious Runoff Depth=7.53" Tc=6.0 min CN=98 Runoff=0.64 cfs 1,644 cf
Pond 1P: UGIS-1 Discarded=0.02	Peak Elev=300.54' Storage=542 cf Inflow=0.60 cfs 1,270 cf cfs 1,048 cf Primary=0.15 cfs 222 cf Outflow=0.18 cfs 1,270 cf
Pond 4P: UGIS-2 Discarded=0.01	Peak Elev=300.62' Storage=324 cf Inflow=2.89 cfs 7,460 cf cfs 955 cf Primary=2.91 cfs 6,505 cf Outflow=2.92 cfs 7,460 cf
Pond 5P: UGIS-3 Discarded=0.04 cfs	Peak Elev=301.46' Storage=939 cf Inflow=3.81 cfs 24,613 cf 2,426 cf Primary=3.61 cfs 22,187 cf Outflow=3.65 cfs 24,613 cf
Pond 6P: Detention Basin-1	Peak Elev=298.46' Storage=8,800 cf Inflow=9.37 cfs 22,156 cf Outflow=3.54 cfs 22,118 cf
Pond 7P: Detention Basin-2	Peak Elev=299.47' Storage=8,846 cf Inflow=10.14 cfs 24,486 cf Outflow=3.62 cfs 24,439 cf
Pond 10P: Detention Basin-3	Peak Elev=316.57' Storage=6,517 cf Inflow=10.15 cfs 24,174 cf Outflow=3.75 cfs 24,183 cf
Link 1L: DP-1 Mass-DOT West	Inflow=0.24 cfs 548 cf Primary=0.24 cfs 548 cf
Link 2L: DP-2 Mass-DOT East	Inflow=10.83 cfs 71,293 cf Primary=10.83 cfs 71,293 cf
Link 3L: DP-3 Bank Parking Lot	Primary=0.00 cfs 0 cf
Link 4L: _placeholder	Inflow=10.91 cfs 71,841 cf Primary=10.91 cfs 71,841 cf
Link 8L: center CB	Inflow=4.07 cfs 25,971 cf Primary=4.07 cfs 25,971 cf

Inflow=6.98 cfs 45,321 cf Primary=6.98 cfs 45,321 cf

Total Runoff Area = 196,433 sf Runoff Volume = 76,346 cf Average Runoff Depth = 4.66" 61.48% Pervious = 120,761 sf 38.52% Impervious = 75,671 sf

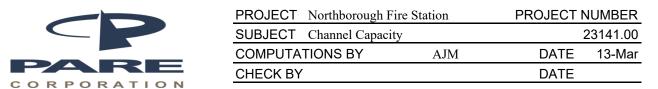
Pro Hydro Prepared by Pare Corporation HydroCAD® 10.10-5a s/n 10894 © 2020 Hydro	23141.00 Proposed Conditions WQv 1.2" Storm NOAA 24-hr A WQv 1.2" Rainfall=1.20" Printed 3/15/2024 CAD Software Solutions LLC Page 1	
Time span=0.00-72.00 hrs, dt=0.05 hrs, 1441 points Runoff by SCS TR-20 method, UH=SCS, Split Pervious/Imperv. Reach routing by Dyn-Stor-Ind method - Pond routing by Dyn-Stor-Ind method		
SubcatchmentPDA-1: Subcat PDA-1	Runoff Area=1,142 sf 60.31% Impervious Runoff Depth=0.59" Tc=6.0 min CN=61/98 Runoff=0.02 cfs 57 cf	
SubcatchmentPDA-2A: Subcat PDA-2A	Runoff Area=3,194 sf 58.96% Impervious Runoff Depth=0.58" Tc=6.0 min CN=61/98 Runoff=0.07 cfs 155 cf	
SubcatchmentPDA-2B: Subcat PDA-2B	Runoff Area=1,730 sf 90.08% Impervious Runoff Depth=0.89" Tc=6.0 min CN=61/98 Runoff=0.05 cfs 128 cf	
SubcatchmentPDA-2C: Subcat PDA-2C	Runoff Area=5,944 sf 32.21% Impervious Runoff Depth=0.32" Tc=6.0 min CN=61/98 Runoff=0.07 cfs 157 cf	
SubcatchmentPDA-2D: Subcat PDA-2D	Runoff Area=2,329 sf 14.02% Impervious Runoff Depth=0.14" Tc=6.0 min CN=61/98 Runoff=0.01 cfs 27 cf	
SubcatchmentPDA-2E: Subcat PDA-2E	Runoff Area=3,332 sf 100.00% Impervious Runoff Depth=0.99" Tc=6.0 min CN=0/98 Runoff=0.12 cfs 274 cf	
SubcatchmentPDA-2F: Subcat PDA-2F	Runoff Area=4,072 sf 90.43% Impervious Runoff Depth=0.89" Tc=6.0 min CN=61/98 Runoff=0.13 cfs 302 cf	
SubcatchmentPDA-2G: Subcat PDA-2G	Runoff Area=3,190 sf 65.14% Impervious Runoff Depth=0.64" Tc=6.0 min CN=61/98 Runoff=0.07 cfs 171 cf	
SubcatchmentPDA-2H: Subcat PDA-2H	Runoff Area=3,620 sf 89.40% Impervious Runoff Depth=0.88" Tc=6.0 min CN=61/98 Runoff=0.11 cfs 266 cf	
SubcatchmentPDA-2I: Subcat PDA-2I	Runoff Area=2,986 sf 1.23% Impervious Runoff Depth=0.01" Tc=6.0 min CN=61/98 Runoff=0.00 cfs 3 cf	
SubcatchmentPDA-2J: Subcat PDA-2J	Runoff Area=14,841 sf 89.63% Impervious Runoff Depth=0.88" Tc=6.0 min CN=61/98 Runoff=0.47 cfs 1,093 cf	
SubcatchmentPDA-2K: Subcat PDA-2K	Runoff Area=5,283 sf 8.23% Impervious Runoff Depth=0.08" Tc=6.0 min CN=61/98 Runoff=0.02 cfs 36 cf	
SubcatchmentPDA-2L: Subcat PDA-2L	Runoff Area=13,395 sf 87.78% Impervious Runoff Depth=0.87" Tc=6.0 min CN=61/98 Runoff=0.41 cfs 966 cf	
SubcatchmentPDA-2M: Subcat PDA-2M	Runoff Area=7,503 sf 65.16% Impervious Runoff Depth=0.64" Tc=6.0 min CN=61/98 Runoff=0.17 cfs 402 cf	
SubcatchmentPDA-2N: Subcat PDA-2N	Runoff Area=4,661 sf 0.00% Impervious Runoff Depth=0.00" Tc=6.0 min CN=61/0 Runoff=0.00 cfs 0 cf	
SubcatchmentPDA-20: Subcat PDA-20	Runoff Area=59,192 sf 0.00% Impervious Runoff Depth=0.00" Flow Length=391' Tc=9.3 min CN=56/0 Runoff=0.00 cfs 0 cf	

	23141.00 Proposed Conditions WQv 1.2" Storm
Pro Hydro	NOAA 24-hr A WQv 1.2" Rainfall=1.20"
Prepared by Pare Corporation	Printed 3/15/2024
HydroCAD® 10.10-5a s/n 10894 © 2020 HydroCAD Software	e Solutions LLC Page 2
	-

SubcatchmentPDA-2P: Subcat PDA-2P	Runoff Area=14,672 sf 0.00% Impervious Runoff Depth=0.00" Tc=6.0 min CN=55/0 Runoff=0.00 cfs 0 cf
SubcatchmentPDA-2Q: Subcat PDA-2Q	Runoff Area=22,194 sf 22.59% Impervious Runoff Depth=0.22" Tc=6.0 min CN=59/98 Runoff=0.18 cfs 412 cf
SubcatchmentPDA-2R: Subcat PDA-2R	Runoff Area=1,578 sf 0.00% Impervious Runoff Depth=0.00" Tc=6.0 min CN=61/0 Runoff=0.00 cfs 0 cf
SubcatchmentPDA-ROOF1:Subcat	Runoff Area=7,065 sf 99.84% Impervious Runoff Depth=0.98" Tc=6.0 min CN=61/98 Runoff=0.25 cfs 579 cf
SubcatchmentPDA-ROOF2:Subcat	Runoff Area=11,888 sf 99.99% Impervious Runoff Depth=0.99" Tc=6.0 min CN=61/98 Runoff=0.42 cfs 976 cf
SubcatchmentPDA-ROOF3:Subcat	Runoff Area=2,620 sf 99.07% Impervious Runoff Depth=0.98" Tc=6.0 min CN=61/98 Runoff=0.09 cfs 213 cf
Pond 1P: UGIS-1 Disc	Peak Elev=299.00' Storage=0 cf Inflow=0.00 cfs 0 cf arded=0.00 cfs 0 cf Primary=0.00 cfs 0 cf Outflow=0.00 cfs 0 cf
Pond 4P: UGIS-2 Discarded=0	Peak Elev=299.85' Storage=193 cf Inflow=0.42 cfs 976 cf 0.01 cfs 457 cf Primary=0.38 cfs 519 cf Outflow=0.39 cfs 976 cf
Pond 5P: UGIS-3 Discarded	Peak Elev=299.91' Storage=148 cf Inflow=0.18 cfs 412 cf d=0.03 cfs 412 cf Primary=0.00 cfs 0 cf Outflow=0.03 cfs 412 cf
Pond 6P: Detention Basin-1	Peak Elev=296.80' Storage=1,340 cf Inflow=1.16 cfs 2,354 cf Outflow=0.20 cfs 2,319 cf
Pond 7P: Detention Basin-2	Peak Elev=297.81' Storage=1,377 cf Inflow=1.14 cfs 2,653 cf Outflow=0.25 cfs 2,610 cf
Pond 10P: Detention Basin-3	Peak Elev=310.26' Storage=0 cf Inflow=0.18 cfs 412 cf Outflow=0.18 cfs 412 cf
Link 1L: DP-1 Mass-DOT West	Inflow=0.02 cfs 57 cf Primary=0.02 cfs 57 cf
Link 2L: DP-2 Mass-DOT East	Inflow=0.47 cfs 5,212 cf Primary=0.47 cfs 5,212 cf
Link 3L: DP-3 Bank Parking Lot	Primary=0.00 cfs 0 cf
Link 4L: _placeholder	Inflow=0.48 cfs 5,268 cf Primary=0.48 cfs 5,268 cf
Link 8L: center CB	Inflow=0.26 cfs 2,764 cf Primary=0.26 cfs 2,764 cf

Inflow=0.21 cfs 2,447 cf Primary=0.21 cfs 2,447 cf

Total Runoff Area = 196,433 sf Runoff Volume = 6,215 cf Average Runoff Depth = 0.38" 61.48% Pervious = 120,761 sf 38.52% Impervious = 75,671 sf


Hydraulic Design Table (25-year Design Storm)Date 3/18/2023InitialsAJM													
From (Inlet) Node	To (Outlet) Node	Length	Inlet Invert Elevation	Outlet Invert Elevation	Total Drop	Average Slope	Pipe Diameter or Height	Manning's Roughness	Peak Flow	Max Flow Velocity	Design Flow Capacity	Max Flow / Design Flow Ratio	Max Flow Depth / Total Depth
Column1	Column2	(ft)	(ft)3	(ft)5	(ft)7	(%)	(inches)	Column10	(cfs)16	(ft/sec)	(cfs)17	Column18	Ratio Column19
DB-2	OCS-03	29.79	297.50	297.34	0.16	0.5400	12.000	0.0120	2.74	4.68	2.83	0.97	0.89
DB-01	0CS-02	34.77	296.50	296.27	0.23	0.6600	12.000	0.0120	1.82	2.79	3.14	0.58	0.99
OCS-04	0CS-02	12.49	297.30	297.00	0.30	2.4000	12.000	0.0150	2.23	4.91	4.79	0.47	0.56
UGIS-02	OCS-01	9.28	299.50	299.15	0.35	3.7700	12.000	0.0150	2.24	5.50	6.00	0.37	0.52
UGIS-01	OCS-06	5.79	299.50	299.35	0.15	2.5900	12.000	0.0150	0.00	0.00	4.97	0.00	0.00
OCS-06	DMH-01	19.26	298.10	297.85	0.25	1.3000	12.000	0.0150	0.00	0.00	3.52	0.00	0.11
AD-10	DMH-13	7.77	304.00	303.90	0.10	1.2900	12.000	0.0150	0.22	1.34	3.50	0.06	0.36
OCS-05	DMH-13	78.26	309.95	305.25	4.70	6.0100	12.000	0.0150	2.17	7.85	7.57	0.29	0.38
CB-01	DMH-01	32.94	298.00	297.80	0.20	0.6100	12.000	0.0120	0.27	1.84	3.01	0.09	0.25
DMH-05	Out-1Pipe - (104)	22.29	297.65	297.50	0.15	0.6700	12.000	0.0120	0.11	1.79	3.17	0.04	0.13
CB-08	AS-05	12.50	297.40	296.70	0.70	5.6000	12.000	0.0120	0.41	4.59	9.13	0.04	0.17
AS-05	Out-1Pipe - (106)	8.73	296.60	296.50	0.10	1.1500	12.000	0.0120	0.41	2.82	4.13	0.10	0.24
AD-04	Out-1Pipe - (19)	42.51	297.80	297.50	0.30	0.7100	12.000	0.0120	0.10	1.78	3.24	0.03	0.12
CB-05	DMH-04	49.66	298.15	297.90	0.25	0.5000	12.000	0.0120	0.48	0.85	2.74	0.18	0.88
AD-13	AD-12	43.65	324.00	322.10	1.90	4.3500	12.000	0.0120	0.31	4.71	8.05	0.04	0.14
AD-12	AD-11	190.82	322.00	312.10	9.90	5.1900	12.000	0.0120	0.57	1.20	8.79	0.07	0.59
AD-11	Out-01	6.98	313.40	313.30	0.10	1.4300	12.000	0.0120	3.10	4.94	4.62	0.67	0.74
CB-02	DMH-01	33.38	298.00	297.80	0.20	0.6000	12.000	0.0120	0.11	1.05	2.99	0.04	0.20
CB-06	DMH-07	43.51	297.10	296.85	0.25	0.5700	12.000	0.0120	0.76	1.65	2.93	0.26	0.66
AF-03	Out-1Pipe - (32)	8.31	296.55	296.50	0.05	0.6000	12.000	0.0120	1.60	3.22	2.99	0.54	0.60
AS-03	AF-03	6.27	296.80	296.72	0.08	1.2800	12.000	0.0120	1.60	3.48	4.36	0.37	0.58
DMH-07	AS-03	9.85	296.85	296.80	0.05	0.5100	12.000	0.0120	1.61	2.73	2.75	0.59	0.71
CB-07	DMH-07	26.37	297.00	296.85	0.15	0.5700	12.000	0.0120	0.90	1.98	2.91	0.31	0.72
CB-10	DMH-08	29.02	297.00	296.85	0.15	0.5200	12.000	0.0120	0.45	1.62	2.77	0.16	0.39
CB-03	DMH-02	21.62	297.75	297.60	0.15	0.6900	12.000	0.0120	0.36	1.97	3.22	0.11	0.38
AD-15	AD-16	100.82	319.50	308.60	10.90	10.8100	12.000	0.0120	0.11	4.95	12.69	0.01	0.07
AD-06	AD-07	16.01	298.65	298.45	0.20	1.2500	12.000	0.0120	0.02	0.83	4.31	0.01	0.08
AD-07	DMH-06	39.40	298.45	298.05	0.40	1.0200	12.000	0.0120	0.08	1.52	3.89	0.02	0.12
DMH-06	DMH-05	73.93	298.05	297.65	0.40	0.5400	12.000	0.0120	0.11	1.72	2.84	0.04	0.14
AD-05	DMH-06	27.22	298.35	298.05	0.30	1.1000	12.000	0.0120	0.04	1.16	4.05	0.01	0.11

Hydraulic Design Table (25-year Design Storm)Date 3/18/2023InitialsAJM													
From (Inlet) Node	To (Outlet) Node	Length	Inlet Invert Elevation	Outlet Invert Elevation	Total Drop	Average Slope	Pipe Diameter or Height	Manning's Roughness	Peak Flow	Max Flow Velocity	Design Flow Capacity	Max Flow / Design Flow Ratio	Max Flow Depth / Total Depth Ratio
Column1	Column2	(ft)	(ft)3	(ft)5	(ft)7	(%)	(inches)	Column10	(cfs)16	(ft/sec)	(cfs)17	Column18	Column19
AD-03	Out-1Pipe - (67)	31.56	297.80	297.50	0.30	0.9500	12.000	0.0120	0.04	1.47	3.76	0.01	0.07
AD-16	DMH-11	39.84	308.50	299.65	8.85	22.2200	12.000	0.0120	0.22	6.76	18.19	0.01	0.09
DMH-01	DMH-02	26.13	297.80	297.60	0.20	0.7700	12.000	0.0120	0.36	1.45	3.38	0.11	0.36
AS-06	Out-1Pipe - (75)	4.95	297.55	297.50	0.05	1.0100	12.000	0.0120	0.70	3.03	3.88	0.18	0.33
DMH-02	AS-06	5.95	297.60	297.55	0.05	0.8400	12.000	0.0120	0.70	2.29	3.54	0.20	0.41
DMH-11	Out-1Pipe - (76)	6.20	299.55	299.50	0.05	0.8100	12.000	0.0120	0.22	2.11	3.47	0.06	0.19
DMH-12	AD-15	60.78	322.00	319.50	2.50	4.1100	12.000	0.0120	0.04	1.88	7.83	0.01	0.09
AD-14	DMH-12	16.25	322.75	322.00	0.75	4.6200	12.000	0.0120	0.05	2.35	8.29	0.01	0.08
CB-04	DMH-04	7.62	297.95	297.90	0.05	0.6600	12.000	0.0120	1.05	1.35	3.13	0.34	0.99
AF-02	Out-1Pipe - (80)	10.21	297.60	297.50	0.10	0.9800	12.000	0.0120	2.31	4.17	3.82	0.60	0.66
AS-02	AF-02	5.71	297.80	297.77	0.03	0.5300	12.000	0.0120	2.31	3.53	2.80	0.83	0.78
DMH-04	AS-02	11.59	297.90	297.80	0.10	0.8600	12.000	0.0120	2.31	3.01	3.59	0.64	0.95
AD-01	DMH-10	7.62	298.05	298.00	0.05	0.6600	12.000	0.0120	0.53	1.17	3.13	0.17	0.68
AD-02	DMH-10	75.70	298.40	298.00	0.40	0.5300	12.000	0.0120	0.39	1.05	2.81	0.14	0.51
DMH-10	AS-01	7.88	298.00	297.95	0.05	0.6300	12.000	0.0120	1.35	2.52	3.08	0.44	0.65
AF-01	Out-1Pipe - (85)	20.02	297.73	297.50	0.23	1.1500	12.000	0.0120	1.35	3.99	4.14	0.33	0.44
AS-01	AF-01	6.99	297.95	297.90	0.05	0.7200	12.000	0.0120	1.35	3.26	3.27	0.41	0.52
OCS-03	Out-1Pipe - (88)	25.65	297.34	297.21	0.13	0.5100	12.000	0.0150	2.06	3.34	2.20	0.94	0.73
OCS-01	Out-1Pipe - (91)	17.12	296.80	296.50	0.30	1.7500	12.000	0.0120	2.38	5.16	5.11	0.47	0.58
AF-04	Out-1Pipe - (92)	6.50	296.55	296.50	0.05	0.7700	12.000	0.0120	0.72	2.86	3.38	0.21	0.36
AS-04	AF-04	6.36	296.80	296.72	0.08	1.2600	12.000	0.0120	0.72	3.27	4.33	0.17	0.32
DMH-08	AS-04	5.70	296.85	296.80	0.05	0.8800	12.000	0.0120	0.72	2.42	3.61	0.20	0.40
CB-09	DMH-08	15.80	296.95	296.85	0.10	0.6300	12.000	0.0120	0.28	1.39	3.07	0.09	0.40
OCS-02	Out-1Pipe - (95)	8.26	296.27	296.02	0.25	3.0300	12.000	0.0150	4.03	5.83	5.37	0.75	0.82
AD-08	Out-1Pipe - (97)	7.97	296.60	296.50	0.10	1.2600	12.000	0.0120	0.04	1.58	4.32	0.01	0.07
DMH-13	Out-1Pipe - (98)	109.73	303.90	300.00	3.90	3.5500	12.000	0.0120	2.22	7.70	7.28	0.31	0.40
AD-09	Out-1Pipe - (99)	6.17	296.60	296.50	0.10	1.6200	12.000	0.0120	0.04	1.69	4.91	0.01	0.07

Town of Northborough NORTHBOROUGH FIRE STATION

APPENDIX C

Channel Capacity Calculations Stormwater Treatment – TSS & Phosphorus Calculations Proprietary Systems Calculations Underground Infiltration System Calculations Mounding Analysis Calculations Recharge Volume Calculations

Stormwater Conveyance Channel Design - Behind Retaining Wall Purpose: To size the depth of flow within a Trapezoidal Swale

ROADWAY SWALE - MAXIMUM FLOW & SLOPE

Using Manning's Equation

Channel Geometry			
Input:			
b =	2	ft	
d =	1.5	ft	
Z = e/d =	3	(e.g. 3:1 - input "3")	
e =	4.5	ft	
T =	11	ft	
Area =	9.75	sf	
Wetted Perimeter =	11.49	ft	
Hyd Radius =	0.85	ft	
Q25 * =	5.43	cfs*	*From PDA-3 from HydroCAD
S =	0.030		
n ** =	0.030		
V =	3.8	fps (from be	elow)
d required =	0.43	ft	*The town of Northborough
d provided =	1.50	ft* ok!	requires there to be at least 1' of
			free board for swales

Solve through	Trial and Error				
d (ft)	A (SF)	P (ft)	R (ft)	V (fps)	Q (cfs)
0.40	1.28	4.53	0.28	3.69	4.73
0.41	1.32	4.59	0.29	3.74	4.96
0.42	1.37	4.66	0.29	3.79	5.19
0.43	1.41	4.72	0.30	3.84	5.44
0.44	1.46	4.78	0.31	3.89	5.68
0.45	1.51	4.85	0.31	3.94	5.94
0.46	1.55	4.91	0.32	3.99	6.20
0.47	1.60	4.97	0.32	4.03	6.46

A = (b+2*d)*d

 $Pw = b+2*y*(1+z^2)^0.5$

* From Proposed Hydrology

** Avg. of natural channels, good condition and natural channels with stones and weeds (CEN Ref Manual, A-35)

PAGE 1 OF 1

PROJECT Northborough Fire Station		PROJECT NUMBER	23141.00
SUBJECT Stormwater Treatment Area			
COMPUTATIONS BY	SWL	DATE	3/15/2024
CHECK BY	JAJ	DATE	3/15/2024

Stormwater Treatment Area Calculation - Area Required

Total Project Area	196,433	ft ²	4.51	acres
Total Existing Impervious Area within LOD	31,857	ft ²	0.73	acres
Total Proposed Impervious area within LOD	75,709	ft ²	1.74	acres
Off Site Impervious (PDA-1, 2A, 2B, 2Q)	9,145	ft ²	0.21	acres
Impervious Area Treatment Requirement		66564 ft ²	1.53	acres

BMP Descriptions	Phosphorus Removal Efficiency TSS Removal Efficier				
(1) Aqua Swirl*	0.0%	93.3%			
(2) Aqua Filter**	88.6%	0.0%			
(3) Underground Infiltration Field***	67.5%	88.2%			

*AquaShield Statement of Qualifications Table 3

**AquaShield Statement of Qualifications Table 4

***BATT Calculations Provided

|--|

	<u>Total Area</u>	Total Imp.	BMP	Efficency	% Reduction
PDA-1	1142	0	-	0.00	0.00
PDA-2A	3194	0	-	0.00	0.00
PDA-2B	1730	0	-	0.00	0.00
PDA-2C	5944	1914	-	0.00	0.00
PDA-2D	2329	326	1	0.89	0.00
PDA-2E	3332	3332	1	0.89	0.04
PDA-2F	4072	3683	1	0.89	0.05
PDA-2G	3190	2078	1	0.89	0.03
PDA-2H	3620	3237	1	0.89	0.04
PDA-21	2986	37	-	0.00	0.00
PDA-2J	14841	13302	1	0.89	0.18
PDA-2K	5283	435	-	0.00	0.00
PDA-2L	13395	11758	1	0.89	0.16
PDA-2M	7503	4889	1	0.89	0.07
PDA-2N	4661	0	3	0.00	0.00
PDA-20	59192	0	-	0.00	0.00
PDA-2P	14672	0	-	0.00	0.00
PDA-2Q	22194	0	-	0.00	0.00
PDA-2R	1578	0	3	0.00	0.00
PDA-ROOF1	7065	7065	1	0.89	0.09
PDA-ROOF2	11888	11888	3	0.68	0.12
PDA-ROOF3	2620	2620	1	0.89	0.03
Total		66564			<u>81.7%</u>
	Total Area	Total Imp.	BMP	Efficency	% Reduction

	00504			01.7/6
Total Area	<u>Total Imp.</u>	BMP	Efficency	<u>% Reduction</u>
1142	0	-	0.00	0.00
3194	0	-	0.00	0.00
1730	0	-	0.00	0.00
5944	1914	2	0.93	0.03
2329	326	2	0.93	0.00
3332	3332	2	0.93	0.05
4072	3683	2	0.93	0.05
3190	2078	2	0.93	0.03
3620	3237	2	0.93	0.05
2986	37	-	0.00	0.00
14841	13302	2	0.93	0.19
5283	435	-	0.00	0.00
13395	11758	2	0.93	0.16
7503	4889	2	0.93	0.07
4661	0	3	0.00	0.00
59192	0	-	0.00	0.00
14672	0	-	0.00	0.00
	1142 3194 1730 5944 2329 3332 4072 3190 3620 2986 14841 5283 13395 7503 4661 59192	Total AreaTotal Imp.114203194017300594419142329326333233324072368331902078362032372986371484113302528343513395117587503488946610591920	Total AreaTotal Imp.BMP11420-31940-17300-59441914223293262333233322407236832319020782362032372298637-148411330225283435-13395117582466103591920-	Total AreaTotal Imp.BMPEfficency11420-0.0031940-0.0017300-0.005944191420.93232932620.933332333220.933190207820.933620323720.93298637-0.00148411330220.935283435-0.00133951175820.934661030.00591920-0.00

PDA-2Q	22194	0	-	0.00	0.00
PDA-2R	1578	0	3	0.00	0.00
PDA-ROOF1	7065	7065	2	0.93	0.10
PDA-ROOF2	11888	11888	3	0.88	0.16
PDA-ROOF3	2620	2620	2	0.93	0.04
Total		66564			<u>91.7%</u>

Project Name: Northborough Fire Station

Structure ID: DMH-09

Water Quality Flow (cfs) to be treated 0.14

> HDS req'd AS-2 AF rows 1

AF unit

AF-2.1

Aqua-Filter HDS Sizing	
-------------------------------	--

AS	ID		Area	W	QF
Model	(in)	(ft)	(sf)	(gpm)	(cfs) ¹
AS-2	30	2.5	4.91	245.4	0.55
AS-3	42	3.5	9.62	481.1	1.07
AS-4	54	4.5	15.90	795.2	1.77
AS-5	66	5.5	23.76	1187.9	2.65
AS-6	78	6.5	33.18	1659.2	3.70
AS-7	90	7.5	44.18	2208.9	4.92
AS-8	102	8.5	56.75	2837.3	6.32
AS-9	114	9.5	70.88	3544.1	7.90
AS-10	126	10.5	86.59	4329.5	9.65
AS-11	138	11.5	103.87	5193.4	11.57
AS-12	150	12.5	122.72	6135.9	13.67
AS-13	156	13.0	132.73	6636.6	14.79

AquaFilter Sizing

Loa	Loading Rate		gpm/sf
Rows	Area (sf)	(gpm)	(cfs)
1	12	240	0.53
2	24	480	1.07
3	36	720	1.60
4	48	960	2.14
5	60	1200	2.67
6	72	1440	3.21
7	84	1680	3.74
8	96	1920	4.28
9	108	2160	4.81
10	120	2400	5.35
11	132	2640	5.88
12	144	2880	6.42
13	156	3120	6.95
14	168	3360	7.49
15	180	3600	8.02
16	192	3840	8.56
17	204	4080	9.09
18	216	4320	9.63
19	228	4560	10.16
20	240	4800	10.69
22	264	5280	11.76
24	288	5760	12.83
26	312	6240	13.90

For further questions please contact:

Project Name: Northborough Fire Station

Structure ID: DMH-08

replace with AS-2 only

Flow (cfs)to be treated 0.09

HDS req'd AS-2 AF rows 1

AF unit

AF-2.1

Aqua-Filter HDS Sizing

AS		D	Area	WQF	
Model	(in)	(ft)	(sf)	(gpm)	(cfs) ¹
AS-2	30	2.5	4.91	245.4	0.55
AS-3	42	3.5	9.62	481.1	1.07
AS-4	54	4.5	15.90	795.2	1.77
AS-5	66	5.5	23.76	1187.9	2.65
AS-6	78	6.5	33.18	1659.2	3.70
AS-7	90	7.5	44.18	2208.9	4.92
AS-8	102	8.5	56.75	2837.3	6.32
AS-9	114	9.5	70.88	3544.1	7.90
AS-10	126	10.5	86.59	4329.5	9.65
AS-11	138	11.5	103.87	5193.4	11.57
AS-12	150	12.5	122.72	6135.9	13.67
AS-13	156	13.0	132.73	6636.6	14.79

AquaFilter Sizing

Loading Rate		20	gpm/sf
Rows	Area (sf)	(gpm)	(cfs)
1	12	240	0.53
2	24	480	1.07
3	36	720	1.60
4	48	960	2.14
5	60	1200	2.67
6	72	1440	3.21
7	84	1680	3.74
8	96	1920	4.28
9	108	2160	4.81
10	120	2400	5.35
11	132	2640	5.88
12	144	2880	6.42
13	156	3120	6.95
14	168	3360	7.49
15	180	3600	8.02
16	192	3840	8.56
17	204	4080	9.09
18	216	4320	9.63
19	228	4560	10.16
20	240	4800	10.69
22	264	5280	11.76
24	288	5760	12.83
26	312	6240	13.90

For further questions please contact:

Project Name: Northborough Fire Station

Structure ID: DMH-07

Flow (cfs)to be treated 0.3

HDS req'd AS-2 AF rows 1

AF unit

AF-2.1

AS	ID Area WQF		QF		
Model	(in)	(ft)	(sf)	(gpm)	(cfs) ¹
AS-2	30	2.5	4.91	245.4	0.55
AS-3	42	3.5	9.62	481.1	1.07
AS-4	54	4.5	15.90	795.2	1.77
AS-5	66	5.5	23.76	1187.9	2.65
AS-6	78	6.5	33.18	1659.2	3.70
AS-7	90	7.5	44.18	2208.9	4.92
AS-8	102	8.5	56.75	2837.3	6.32
AS-9	114	9.5	70.88	3544.1	7.90
AS-10	126	10.5	86.59	4329.5	9.65
AS-11	138	11.5	103.87	5193.4	11.57
AS-12	150	12.5	122.72	6135.9	13.67
AS-13	156	13.0	132.73	6636.6	14.79

AquaFilter Sizing

Loa	Loading Rate		gpm/sf
Rows	Area (sf)	(gpm)	(cfs)
1	12	240	0.53
2	24	480	1.07
3	36	720	1.60
4	48	960	2.14
5	60	1200	2.67
6	72	1440	3.21
7	84	1680	3.74
8	96	1920	4.28
9	108	2160	4.81
10	120	2400	5.35
11	132	2640	5.88
12	144	2880	6.42
13	156	3120	6.95
14	168	3360	7.49
15	180	3600	8.02
16	192	3840	8.56
17	204	4080	9.09
18	216	4320	9.63
19	228	4560	10.16
20	240	4800	10.69
22	264	5280	11.76
24	288	5760	12.83
26	312	6240	13.90

For further questions please contact:

Project Name: Northborough Fire Station

Structure ID: DMH-02

replace with AS-2 only

Flow (cfs)to be treated 0.08

HDS req'd AS-2 AF rows 1

AF unit A

AF-2.1

Aqua-Filter HDS Sizing	
------------------------	--

AS	ID		Area	WQF	
Model	(in)	(ft)	(sf)	(gpm)	(cfs) ¹
AS-2	30	2.5	4.91	245.4	0.55
AS-3	42	3.5	9.62	481.1	1.07
AS-4	54	4.5	15.90	795.2	1.77
AS-5	66	5.5	23.76	1187.9	2.65
AS-6	78	6.5	33.18	1659.2	3.70
AS-7	90	7.5	44.18	2208.9	4.92
AS-8	102	8.5	56.75	2837.3	6.32
AS-9	114	9.5	70.88	3544.1	7.90
AS-10	126	10.5	86.59	4329.5	9.65
AS-11	138	11.5	103.87	5193.4	11.57
AS-12	150	12.5	122.72	6135.9	13.67
AS-13	156	13.0	132.73	6636.6	14.79

AquaFilter Sizing

Loa	Loading Rate		gpm/sf
Rows	Area (sf)	(gpm)	(cfs)
1	12	240	0.53
2	24	480	1.07
3	36	720	1.60
4	48	960	2.14
5	60	1200	2.67
6	72	1440	3.21
7	84	1680	3.74
8	96	1920	4.28
9	108	2160	4.81
10	120	2400	5.35
11	132	2640	5.88
12	144	2880	6.42
13	156	3120	6.95
14	168	3360	7.49
15	180	3600	8.02
16	192	3840	8.56
17	204	4080	9.09
18	216	4320	9.63
19	228	4560	10.16
20	240	4800	10.69
22	264	5280	11.76
24	288	5760	12.83
26	312	6240	13.90

For further questions please contact:

Aqua-Filter[™] Design Worksheet

Project Name: Northborough Fire Station replace with AS-2 only

Structure ID: DMH-04

Flow (cfs)to be treated 0.3

> HDS req'd AS-2 AF rows 1

AF unit AF-2.1

Aqua-Filter HDS Sizing

AS	II	D	Area	W	QF
Model	(in)	(ft)	(sf)	(gpm)	(cfs) ¹
AS-2	30	2.5	4.91	245.4	0.55
AS-3	42	3.5	9.62	481.1	1.07
AS-4	54	4.5	15.90	795.2	1.77
AS-5	66	5.5	23.76	1187.9	2.65
AS-6	78	6.5	33.18	1659.2	3.70
AS-7	90	7.5	44.18	2208.9	4.92
AS-8	102	8.5	56.75	2837.3	6.32
AS-9	114	9.5	70.88	3544.1	7.90
AS-10	126	10.5	86.59	4329.5	9.65
AS-11	138	11.5	103.87	5193.4	11.57
AS-12	150	12.5	122.72	6135.9	13.67
AS-13	156	13.0	132.73	6636.6	14.79

AquaFilter Sizing

Loa	ading Rate	20	gpm/sf
Rows	Area (sf)	(gpm)	(cfs)
1	12	240	0.53
2	24	480	1.07
3	36	720	1.60
4	48	960	2.14
5	60	1200	2.67
6	72	1440	3.21
7	84	1680	3.74
8	96	1920	4.28
9	108	2160	4.81
10	120	2400	5.35
11	132	2640	5.88
12	144	2880	6.42
13	156	3120	6.95
14	168	3360	7.49
15	180	3600	8.02
16	192	3840	8.56
17	204	4080	9.09
18	216	4320	9.63
19	228	4560	10.16
20	240	4800	10.69
22	264	5280	11.76
24	288	5760	12.83
26	312	6240	13.90

For further questions please contact:

Pasquale Napolitano pnapolitano@aquashieldinc.com (207) 807-1327

Aqua-Filter[™] Design Worksheet

Project Name: Northborough Fire Station

Structure ID: DMH-XX

Flow (cfs)to be treated 0.12

HDS req'd AS-2 AF rows 1

AF unit

AF-2.1

Aqua-Filter HDS Sizing

AS	ID		Area	W	QF
Model	(in)	(ft)	(sf)	(gpm)	(cfs) ¹
AS-2	30	2.5	4.91	245.4	0.55
AS-3	42	3.5	9.62	481.1	1.07
AS-4	54	4.5	15.90	795.2	1.77
AS-5	66	5.5	23.76	1187.9	2.65
AS-6	78	6.5	33.18	1659.2	3.70
AS-7	90	7.5	44.18	2208.9	4.92
AS-8	102	8.5	56.75	2837.3	6.32
AS-9	114	9.5	70.88	3544.1	7.90
AS-10	126	10.5	86.59	4329.5	9.65
AS-11	138	11.5	103.87	5193.4	11.57
AS-12	150	12.5	122.72	6135.9	13.67
AS-13	156	13.0	132.73	6636.6	14.79

AquaFilter Sizing

Loa	ading Rate	20	gpm/sf
Rows	Area (sf)	(gpm)	(cfs)
1	12	240	0.53
2	24	480	1.07
3	36	720	1.60
4	48	960	2.14
5	60	1200	2.67
6	72	1440	3.21
7	84	1680	3.74
8	96	1920	4.28
9	108	2160	4.81
10	120	2400	5.35
11	132	2640	5.88
12	144	2880	6.42
13	156	3120	6.95
14	168	3360	7.49
15	180	3600	8.02
16	192	3840	8.56
17	204	4080	9.09
18	216	4320	9.63
19	228	4560	10.16
20	240	4800	10.69
22	264	5280	11.76
24	288	5760	12.83
26	312	6240	13.90

For further questions please contact:

Pasquale Napolitano pnapolitano@aquashieldinc.com (207) 807-1327

State	MASSACHUSETTS
Municipality	NORTHBOROUGH
Permit Type	Local
Permit Number	na
Major Watershed	CONCORD
TP Load Reduction Target	N/A
TN Load Reduction Target	N/A
TSS Load Reduction Target	N/A

Table 1. Project Summary Credit for NORTHBOROUGH, MASSACHUSETTS

Project Type	Removed Phosphorus Load (lb/yr)	Removed Nitrogen Load (lb/yr)	Removed Sediment Load (lb/yr)
Structural	0.28	3.43	105.67
Non-Structural	0	0	0
Land Use Conversion	0	0	0
Total	0.28	3.43	105.67

 Table 2. Structural Project Summary for NORTHBOROUGH, MASSACHUSETTS

Project ID	ВМР Туре	BMP Storage Capacity (ft ³)/ Filter Depth (in.)	Phosphorus BMP Efficiency (%)	Nitrogen BMP Efficiency (%)	Sediment BMP Efficiency (%)	Removed Phosphorus Load (lb/yr)	Removed Nitrogen Load (lb/yr)	Removed Sediment Load (lb/yr)	Impervious Area Treated (ac)	Runoff Depth (in.)
PDA-ROOF2	INFILTRATION TRENCH	355	67.59	89.09	88.21	0.28	3.43	105.67	0.2729	0.36

Table 3. Non-Structural Project Summary for NORTHBOROUGH, MASSACHUSETTS

There are no non-structural BMPs.

Table 4. Land Use Conversion Project Summary for NORTHBOROUGH, MASSACHUSETTS

There are no land use conversion projects.

PAGE 1 OF 3

Northborough Fire Station	PROJECT NUMBER	23141.00
Infiltration Practices		
′́ АЈМ	DATE	3/6/2024
	DATE	
1	Infiltration Practices	Infiltration Practices (AJM DATE

Underground Infiltration System 1 Calculati	on		
Total Area to Infiltration System = Total Impervious Area =	4,172 0	SF SF	
Water Quality Volume (WQV)			
WQV = Impervious Area x 1.0 inches =	0	CF	
Required WQV Volume (including pretreatment) =	0	CF	
Volume provided in UGIS = Total Volume =	531 531	CF CF	
Pretreatment			
<u>Separator Row</u> 0.1" x Impervious Area = Required Pretreatment Volume = Volume Provided =	0 0 0	CF CF CF *	*no seperator row is proposed for UGIS-1
Drawdown within 72 hours			
Time = (Provided Volume) / (K x Bottom Area) Provided Volume = K = saturated hydraulic conductivity = Bottom Area (Average) =	531 2.04 650	CF FT/DAY SF	
Time (hrs) =	10	hrs	< 48 hrs

PAGE 2 OF 3

PROJECT	NorthBorough Fire Station	PROJECT NUMBER	23141.00
SUBJECT	Infiltration Practices		
COMPUTATIONS BY	AJM	DATE	3/6/2024
CHECK BY		DATE	

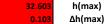
CORFORATION			
Underground Infiltration System 2 Calculati	ion		
Infiltration System			
Total Area to Infiltration System =	11,855	SF	
Total Trafficked Impervious Area =	0	SF	
Water Quality Volume (WQV)			
WQV = Impervious Area x 1.0 inches =	0	CF	
Required WQV Volume (including pretreatment) =	0	CF	
Volume provided in UGIS =	273	CF	
Total Volume =	273	CF	
Pretreatment			
Separator Row			
0.1" x Impervious Area =	0	CF	
Required Pretreatment Volume =	0	CF	*Runoff directed to this system
Volume Provided =	0	CF*	impervious (roof runoff), therefore this sy

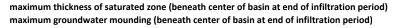
Required Pretreatment Volume = Volume Provided =	0	CF CF	*Runoff directed to this system is from non-pollutant loading impervious (roof runoff), therefore pretreatment is not required for
Volume Provideu –	0	CF.	this system
Drawdown within 72 hours			
Time = (Provided Volume) / (K x Bottom Area)			
Provided Volume =	273	CF	
K = saturated hydraulic conductivity =	2.04	FT/DAY	
Bottom Area (Average) =	292	SF	
Time (hrs) =	11	hrs	< 48 hrs

PAGE 3 OF 3

_

PROJECT	Northborough Fire Station	PROJECT NUMBER	23141.00
SUBJECT	Infiltration Practices		
COMPUTATIONS BY	AJM	DATE	3/6/2024
CHECK BY		DATE	


	CHECK BY		DATE
Underground Infiltration System 3 Calcul	ation		
Underground Infiltration System 3 Calcul Infiltration System	ation		
<u>initiation oyotom</u>			
Total Area to Infiltration System =	= 133,266	SF	
Total Impervious Area =	= 6,064	SF	
Water Quality Volume (WQV)			
WQV = Impervious Area x 1.0 inches =	= 505	CF	
Required WQV Volume (including pretreatment) =	= 505	CF	* Impervious area directed to this UGIS is from offsite flow, therefore water quality treatment is not required for
Required way volume (including pretreatment)	- 505	UF	this system
Volume provided in UGIS =	- 718	CF	
Total Volume :		CF	* Water Quality Volume displayed is
			additional treatment of offsite impervious
Pretreatment			
Pretreatmen	-		
0.1" x Impervious Area :		CF	* Pre-treatment achieved through flow path, drainage
Required Pretreatment Volume		CF	channel, and conveyance structure sumps
Volume Provided =	>51	CF*	
Drawdown within 72 hours			
Time = (Provided Volume) / (K x Bottom Area)		
Provided Volume =	718	CF	
K = saturated hydraulic conductivity =	= 2.04	FT/DAY	
Bottom Area (Average) =	= 817	SF	
Time (hrs) =	= 10	hrs	< 48 hrs


This spreadsheet will calculate the height of a groundwater mound beneath a stormwater infiltration basin. More information can be found in the U.S. Geological Survey Scientific Investigations Report 2010-5102 "Simulation of groundwater mounding beneath hypothetical stormwater infiltration basins".

The user must specify infiltration rate (R), specific yield (Sy), horizontal hydraulic conductivity (Kh), basin dimensions (x, y), duration of infiltration period (t), and the initial thickness of the saturated zone (hi(0), height of the water table if the bottom of the aquifer is the datum). For a square basin the half width equals the half length (x = y). For a rectangular basin, if the user wants the water-table changes perpendicular to the long side, specify x as the short dimension and y as the long dimension. Conversely, if the user wants the values perpendicular to the short side, specify y as the short dimension, x as the long dimension. All distances are from the center of the basin. Users can change the distances from the center of the basin at which water-table aquifer thickness are calculated.

Cells highlighted in yellow are values that can be changed by the user. Cells highlighted in red are output values based on user-specified inputs. The user MUST click the blue "Re-Calculate Now" button each time ANY of the user-specified inputs are changed otherwise necessary iterations to converge on the correct solution will not be done and values shown will be incorrect. Use consistent units for all input values (for example, feet and days)

		use consistent units (e.g. feet & days or inches & hours)	Conversion Tab	ble
Input Values			inch/hour fe	eet/day
0.0860	R	Recharge (infiltration) rate (feet/day)	0.67	1.33
0.330	Sy	Specific yield, Sy (dimensionless, between 0 and 1)		
20.40	к	Horizontal hydraulic conductivity, Kh (feet/day)*	2.00	4.00 In the report accompanying this spreadsheet
25.700	x	1/2 length of basin (x direction, in feet)		(USGS SIR 2010-5102), vertical soil permeability
25.700	У	1/2 width of basin (y direction, in feet)	hours d	ays (ft/d) is assumed to be one-tenth horizontal
3.000	t	duration of infiltration period (days)	36	1.50 hydraulic conductivity (ft/d).
32.500	hi(0)	initial thickness of saturated zone (feet)		

Ground-Distance from water center of basin Mounding, in in x direction, in feet feet

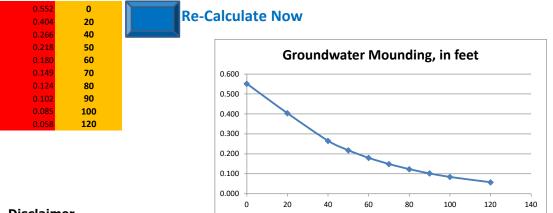
0 **Re-Calculate Now** 0.090 20 0.060 40 50 Groundwater Mounding, in feet 60 70 0.120 80 0.100 90 100 0.080 120 0.060 0.040 0 020 0.000 0 20 40 60 80 100 120 140

Disclaimer

This spreadsheet solving the Hantush (1967) equation for ground-water mounding beneath an infiltration basin is made available to the general public as a convenience for those wishing to replicate values documented in the USGS Scientific Investigations Report 2010-5102 "Groundwater mounding beneath hypothetical stormwater infiltration basins" or to calculate values based on user-specified site conditions. Any changes made to the spreadsheet (other than values identified as user-specified) after transmission from the USGS could have unintended, undesirable consequences. These consequences could include, but may not be limited to: erroneous output, numerical instabilities, and violations of underlying assumptions that are inherent in results presented in the accompanying USGS published report. The USGS assumes no responsibility for the consequences of any changes made to the spreadsheet. If changes are made to the spreadsheet, the user is responsible for documenting the changes and justifying the results and conclusions.

This spreadsheet will calculate the height of a groundwater mound beneath a stormwater infiltration basin. More information can be found in the U.S. Geological Survey Scientific Investigations Report 2010-5102 "Simulation of groundwater mounding beneath hypothetical stormwater infiltration basins".

The user must specify infiltration rate (R), specific yield (Sy), horizontal hydraulic conductivity (Kh), basin dimensions (x, y), duration of infiltration period (t), and the initial thickness of the saturated zone (hi(0), height of the water table if the bottom of the aquifer is the datum). For a square basin the half width equals the half length (x = y). For a rectangular basin, if the user wants the water-table changes perpendicular to the long side, specify x as the short dimension and y as the long dimension. Conversely, if the user wants the values perpendicular to the short dimension, x as the long dimension. All distances are from the center of the basin. Users can change the distances from the center of the basin at which water-table aquifer thickness are calculated.


Cells highlighted in yellow are values that can be changed by the user. Cells highlighted in red are output values based on user-specified inputs. The user MUST click the blue "Re-Calculate Now" button each time ANY of the user-specified inputs are changed otherwise necessary iterations to converge on the correct solution will not be done and values shown will be incorrect. Use consistent units for all input values (for example, feet and days)

		use consistent units (e.g. feet & days or inches & hours)	Convers	ion T	able	
Input Values			inch/ho	ur	feet/day	1
0.8750	R	Recharge (infiltration) rate (feet/day)		0.67		1.33
0.330	Sy	Specific yield, Sy (dimensionless, between 0 and 1)				
20.40	к	Horizontal hydraulic conductivity, Kh (feet/day)*		2.00		4.00 In the report accompanying this spreadsheet
11.670	x	1/2 length of basin (x direction, in feet)				(USGS SIR 2010-5102), vertical soil permeability
25.000	У	1/2 width of basin (y direction, in feet)	hours		days	(ft/d) is assumed to be one-tenth horizontal
3.000	t	duration of infiltration period (days)		36		1.50 hydraulic conductivity (ft/d).
31.500	hi(0)	initial thickness of saturated zone (feet)				

maximum thickness of saturated zone (beneath center of basin at end of infiltration period)
 maximum groundwater mounding (beneath center of basin at end of infiltration period)

Ground- Distance from water center of basin Mounding, in in x direction, in feet feet

Disclaimer

This spreadsheet solving the Hantush (1967) equation for ground-water mounding beneath an infiltration basin is made available to the general public as a convenience for those wishing to replicate values documented in the USGS Scientific Investigations Report 2010-5102 "Groundwater mounding beneath hypothetical stormwater infiltration basins" or to calculate values based on user-specified site conditions. Any changes made to the spreadsheet (other than values identified as user-specified) after transmission from the USGS could have unintended, undesirable consequences. These consequences could include, but may not be limited to: erroneous output, numerical instabilities, and violations of underlying assumptions that are inherent in results presented in the accompanying USGS published report. The USGS assumes no responsibility for the consequences of any changes made to the spreadsheet. If changes are made to the spreadsheet, the user is responsible for documenting the changes and justifying the results and conclusions.

This spreadsheet will calculate the height of a groundwater mound beneath a stormwater infiltration basin. More information can be found in the U.S. Geological Survey Scientific Investigations Report 2010-5102 "Simulation of groundwater mounding beneath hypothetical stormwater infiltration basins".

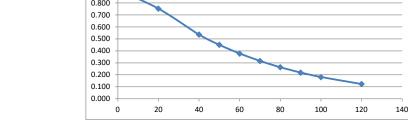
The user must specify infiltration rate (R), specific yield (Sy), horizontal hydraulic conductivity (Kh), basin dimensions (x, y), duration of infiltration period (t), and the initial thickness of the saturated zone (hi(0), height of the water table if the bottom of the aquifer is the datum). For a square basin the half width equals the half length (x = y). For a rectangular basin, if the user wants the water-table changes perpendicular to the long side, specify x as the short dimension and y as the long dimension. Conversely, if the user wants the values perpendicular to the short side, specify y as the short dimension, x as the long dimension. All distances are from the center of the basin. Users can change the distances from the center of the basin at which water-table aquifer thickness are calculated.

Cells highlighted in yellow are values that can be changed by the user. Cells highlighted in red are output values based on user-specified inputs. The user MUST click the blue "Re-Calculate Now" button each time ANY of the user-specified inputs are changed otherwise necessary iterations to converge on the correct solution will not be done and values shown will be incorrect. Use consistent units for all input values (for example, feet and days)

		use consistent units (e.g. feet & days or inches & hours)	Conversion Ta	ble
Input Values			inch/hour f	eet/day
0.6700	R	Recharge (infiltration) rate (feet/day)	0.67	1.33
0.330	Sy	Specific yield, Sy (dimensionless, between 0 and 1)		
20.10	к	Horizontal hydraulic conductivity, Kh (feet/day)*	2.00	4.00 In the report accompanying this spreadsheet
16.000	x	1/2 length of basin (x direction, in feet)		(USGS SIR 2010-5102), vertical soil permeability
56.000	У	1/2 width of basin (y direction, in feet)	hours c	days (ft/d) is assumed to be one-tenth horizontal
3.000	t	duration of infiltration period (days)	36	1.50 hydraulic conductivity (ft/d).
31.500	hi(0)	initial thickness of saturated zone (feet)		

maximum thickness of saturated zone (beneath center of basin at end of infiltration period)

maximum groundwater mounding (beneath center of basin at end of infiltration period)


Δh(max) Ground-Distance from

100

120

water center of basin Mounding, in in x direction, in

feet feet 0 **Re-Calculate Now** 20 40 50 Groundwater Mounding, in feet 60 70 1.000 80 0.900 90 0.800

Disclaimer

This spreadsheet solving the Hantush (1967) equation for ground-water mounding beneath an infiltration basin is made available to the general public as a convenience for those wishing to replicate values documented in the USGS Scientific Investigations Report 2010-5102 "Groundwater mounding beneath hypothetical stormwater infiltration basins" or to calculate values based on user-specified site conditions. Any changes made to the spreadsheet (other than values identified as user-specified) after transmission from the USGS could have unintended, undesirable consequences. These consequences could include, but may not be limited to: erroneous output, numerical instabilities, and violations of underlying assumptions that are inherent in results presented in the accompanying USGS published report. The USGS assumes no responsibility for the consequences of any changes made to the spreadsheet. If changes are made to the spreadsheet, the user is responsible for documenting the changes and justifying the results and conclusions.

PROJECT	Northborough Fire Station	PROJECT NUMBER	23141.00
SUBJECT	Required Recharge Volume		
COMPUTATIONS BY	AJM	DATE	3/6/2024
CHECK BY		DATE	

PAGE 1 OF 1

A. Resources:

MassDEP Stormwater Handbook, 2008 Volume 1 & 3

B. Data:

	HSG A	HSG B	HSG C	HSG D	Total	
Existing Impervious Area (SF)	0	31,857	0	0	31,857	
Proposed Impervious Area (SF)	0	66,564		0	66,564	*9,145 SF Off-Site Impervious not included
Net Increase (SF)	0	34,707	0	0	34,707	

C. Equation

R_v = F x Impervious Area

Target Depth Factor For Each Soil Group							
Hydrologic Group	Target Depth Factor (F)						
A	0.60 inches						
В	0.35 inches						
C	0.25 inches						
D	0.10 inches						

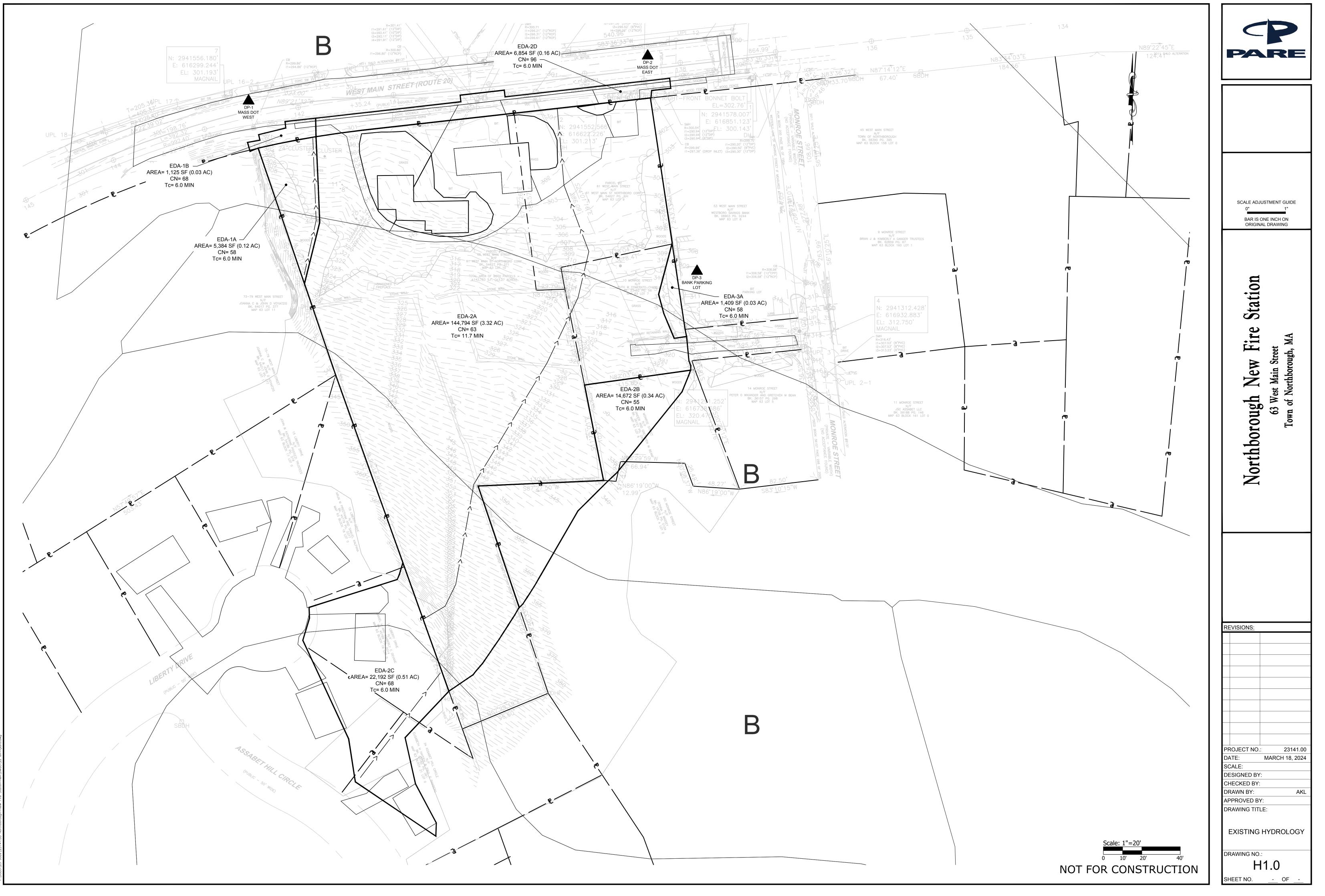
 R_v = Require Recharge Volume, Ft³ F = Target Depth Factor Impervious Area = net impervious area

C. Calculations:

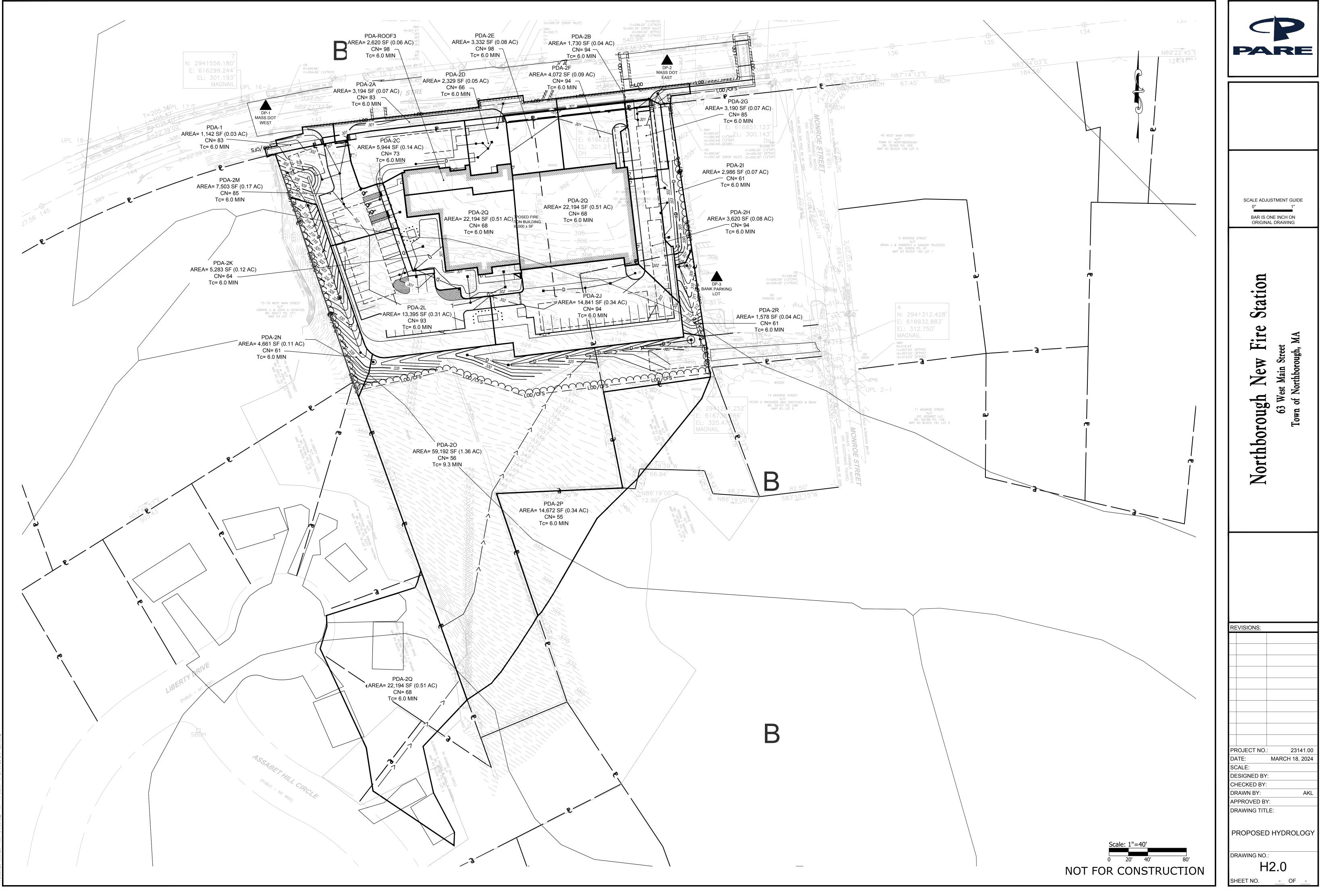
Required Recharge Volume:

Soil Group	Impervious Area (SF)	Required Volume (CF)
A	0	0
В	34,707	1012
С	0	0
D	0	0
Total	34,707	1012

Provided Recharge Volume


BMP	BMP Provided Recharge*	
UGIS-1	531 CF	
UGIS-2	273 CF	
UGIS-3	718 CF	
Total	1522 CF	
Required	1012 CF	

*Recharge volumes take from HydroCAD, Volume is taken from the volume stored below the lowest outlet, volume infiltrated during the storm event is not included


Town of Northborough NORTHBOROUGH FIRE STATION

APPENDIX D

H1.0 Existing Hydrology H2.0 Proposed Hydrology

BS\23 Jobs\23141.00 Northborough-New Fire Station-MA\DWGS\zz ex-hydrc

35\23 Jobs\23141.00 Northborough-New Fire Station-MA\DWGS\zz pro-hy

STORMWATER OPERATION AND MAINTENANCE PLAN LONG TERM POLLUTION PREVENTION PLAN

Pare Project No. 23141.00

NORTHBOROUGH FIRE STATION 61 & 65 West Main Street Northborough, Massachusetts

Assessors Map 63, Lots 9 & 10

Prepared for:

Town of Northborough, MA 63 Main Street Westerly, RI 02891

Prepared by:

Pare Corporation 10 Lincoln Road Foxborough, MA 02035

> MARCH 2024 REVISED APRIL 2024 REVISED MAY 2024

C ENGINEERS 💥 SCIENTISTS 🗞 PLANNERS

STORMWATER OPERATION AND MAINTENANCE PLAN LONG TERM POLLUTION PREVENTION PLAN TABLE OF CONTENTS

PAGE NO.

4

Stormwater Operation and Maintenance Plan	
General Operation and Maintenance Notes	1
Catch Basins/Area Drains with Sump Inspection, Maintenance, and Repair Notes	1
Underground Infiltration/Detention System Inspection, Maintenance, and Repair Notes	1
Water Quality Units – Aqua Swirl and Aqua Filter	2
Swale Inspection, Maintenance, and Repair Notes	2

Long Term Pollution Prevention Plan

Pollution Prevention and Source Controls

APPENDIX A

- Sample O&M Log
- BMP Maintenance and Management Inspection Checklists
- AquaShield AquaFilter Inspection and Maintenance Manual
- AquaShield AquaSwirl Inspection and Maintenance Manual
- Cultec Operation and Maintenance Guidelines
- OM –1 Operation and Maintenance Plan (24" x 36") Site Plan

STORMWATER OPERATION AND MAINTENANCE PLAN

General Operation and Maintenance Notes

Following construction, the completion of the inspection and maintenance requirements below shall be the responsibility of the Owner (See Attachment OM-1).

- 1. The parking lot and entry drives shall be swept by the Owner once in the spring and once during the fall to remove sediments.
- 2. Trash, litter, sediment and other debris shall be removed from any stormwater facility (including catch basins, manholes, erosion control measures, inlets, diversion and outlet structures) at least once per month at the cost of the Owner.
- 3. The site shall be checked for all signs of erosion monthly. All signs of erosion shall be reported to the owner.
- 4. All sediments removed shall be disposed of at an approved and permitted location.
- 5. Snow storage is prohibited in the stormwater BMP's.
- 6. All cleaning and maintenance of drainage system BMP's shall be the responsibility of the property owner. See additional inspection, maintenance, and repair notes for the stormwater system.
- 7. Annual reports shall be submitted to the Town of Northborough Stormwater Authority by June 1st of every year.

Catch Basins/Area Drains with Sump Inspection, Maintenance, and Repair Notes

- 1. Inspections shall be performed a minimum of four times per year (quarterly) for the first year. Bi-annual inspections shall be performed following the first year. Units shall be cleaned annually and whenever the depth of sediment is greater than or equal to half the sump depth.
- 2. The inlet grate shall not be welded to the frame or paved over so that the sump can be easily inspected and maintained.
- 3. Care shall be taken to avoid damaging and displacing hoods placed on hooded outlets during cleaning. Damaged hoods shall be replaced promptly.

Underground Infiltration/Detention System Inspection, Maintenance, and Repair Notes

- 1. The system shall be maintained as recommended by the manufacturer.
- 2. Following storm events with rainfall exceeding 3.1"

- Inspect infiltration/detention system for trash, debris, sediment, erosion, standing water, and overall performance. Defects shall be repaired by the Owner.
- 3. Use inspection port on inlet row to inspect system. Measure down from inspection port to determine depth of sediment. CCTV inspections can be deployed through the access port to determine if any sediment has accumulated in the inlet row.
- 4. For the first year the systems shall be inspected monthly.
- 5. Bi-annually
 - Inspections shall be performed a minimum of two times per year on the inspection ports and drainage structures of the underground infiltration/detention system to ensure proper operation of the system.

Water Quality Units

- 1. The system shall be maintained as recommended by the manufacturer. Operation and maintenance guides are provided as part of this submission for all proposed water quality units.
- 2. Following storm events with rainfall exceeding 3.1"
 - Inspect water quality units for trash, debris, sediment, erosion, standing water, and overall performance. Defects shall be repaired by the Owner per manufacturer suggested specifications.
- 3. Bi-annually
 - Inspections shall be performed a minimum of two times per year on the inspection ports and drainage structures of the water quality units to ensure proper operation.

Swale Inspection, Maintenance, and Repair Notes

- 1. The swale must be inspected quarterly during the first year of operation, and semiannually thereafter for sediment, ponding, erosion, and vegetation.
- 2. Remove accumulated sediment from the swale annually or at any time that the sediment exceeds 1".
- 3. Repair any side slopes that have been damaged due to erosion or other means. Replace any vegetation that has died or been damaged.
- 4. The grass shall be maintained within the swale a minimum of twice annually and maintain a minimum grass height of 4".
- 5. Trash and debris shall be removed from the swale as necessary.

6. The swale shall not be used for snow storage.

LONG TERM POLLUTION PREVENTION PLAN

Pollution Prevention and Source Controls

In addition, the following site specific controls and performance procedures shall be followed. From *Massachusetts Erosion and Sediment Control Guidelines*.

1 General Pollution Prevention Design Features An inspection and maintenance schedule shall be developed by the owner to prevent trash and debris from backing up the stormwater management system.

2 Solid Waste Containment Trash and recycling receptacles will be placed throughout the site.

3 Roads and Parking Area Management Snow shall not be dumped and/or stored in the water quality best management practices (Underground Infiltration Area).

3.1 Street and Parking Lot Sweeping The roads shall be swept to remove sediment and debris. 3.2 Deicing and Salt Storage

Deicing and sanding materials create water quality problems. Refer to Table G-1 in the Appendix when selecting a deicer. All deicing materials shall be stored under cover.

3.3 Snow Disposal

Snow shall not be dumped and/or stored in stormwater management areas.

3.4 Driveway and Parking Lot Sealants

DEM recommends asphalt based sealant rather coal-tar based sealants to be used on driveways and parking lots

4 Hazardous Materials Containment

Stormwater shall be prevented from entering areas with hazardous materials to the maximum extent feasible. Spill containment shall be provided in areas where a spill might occur.

Town of Northborough NORTHBOROUGH FIRE STATION

APPENDIX A

Sample O&M Log BMP Maintenance and Management Inspection Checklist AquaShield AquaFilter Inspection and Maintenance Manual AquaShield AquaSwirl Inspection and Maintenance Manual Cultec Operation and Maintenance Guidelines OM-1 Operation and Maintenance Plan (11 x 17)

Sample Operation and Maintenance Log

Site Maintenance Supervisor:	 Date:	

□ Routine □ Response to Rainfall Event _____ in □ Other ______

BMP	Frequency	Date Performed	Comments
Yard Drain/	Quarterly		
Catch Basins/	Inspections		
Manholes/ Outlet	Maintenance as necessary		
Control Structures	Maintain per manufacturer's recommendations		
Water Quality	Inspect per manufacturer's		
Structures	recommendations		
	Maintain per manufacturer's recommendations		
Vegetated Areas	Maintenance as		
	necessary		
Spring Clean Up	Between April and May		
Sweeping	Biannually		
Grass Mowing	As required		
Mulching	As required		
Edging	As required		
Weed Control	As required		
Pruning	As required		
Aeration	As required		
Lime Application	As required		
Fall Clean up	Between October and		
	December		
Drainage Piping	Annual		
	Inspection		
	Maintenance as necessary		

CATCH BASIN (CB) INSPECTION FORM

Owner:	
Property Manager:	
Inspected by:	
Date of Inspection:	
Catch Basin Inspected #	
GRATE	Acceptable □ Needs Work □ NOTES:
BRICKMORTAR	
OIL HOOD	
-DEPTH OF	
SEDIMENT	
Date of cleaning:	By Whom:
Date of repair:	By Whom:
Note any discrepancies and suggested corrective ac	

UDERGROUND INFILTRATION SYSTEM INSPECTION FORM

Northborough Fire Station	
Owner:	
Property Manager:	
Inspected by:	
Date of Inspection:	
Underground Infiltration System Inspected #	_
Acceptable □ Needs Work □ NOTES:	
Date of cleaning: By	Whom:
Date of repair: By Y	Whom:
Note any discrepancies and suggested corrective actions	

Aqua-Filter™ Stormwater Filtration System

Inspection and Maintenance Manual

AquaShield[™], Inc. 2733 Kanasita Drive Suite 111 Chattanooga, TN 37343 Toll free (888) 344-9044 Phone: (423) 870-8888 Fax: (423) 826-2112 Email: info@aquashieldinc.com <u>www.aquashieldinc.com</u>

March 2014

Page **1** of **18** © AquaShieldTM, Inc. 2014. All rights reserved.

Table of Contents

		Page(s)
•	AquaShield TM Stormwater Treatment Systems	3
•	Aqua-Filter TM Stormwater Treatment System	4 - 12
•	Inspection and Maintenance Worksheets	13 – 17
•	Aqua-Filter TM Tabular Maintenance Schedule	18

AquaShieldTM, Inc. 2733 Kanasita Drive Suite 111 Chattanooga, Tennessee 37343 Toll free (888) 344-9044 (423) 870-8888 Fax (423) 826-2112 www.aquashieldinc.com

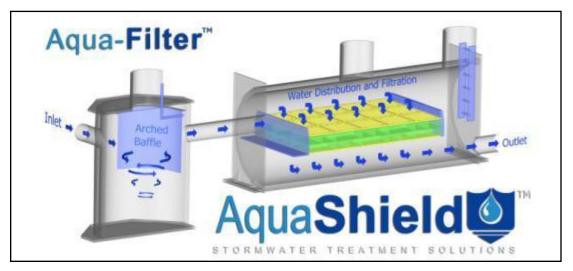
Page **2** of **18** $^{\text{TM}}$, Inc. 2014. All rights reserved.

The highest priority of AquaShieldTM, Inc. (AquaShieldTM) is to protect waterways by providing stormwater treatment solutions to businesses across the world. These solutions have a reliable foundation based on over 20 years of water treatment experience.

Local regulators, engineers, and contractors have praised the AquaShieldTM systems for their simple design and ease of installation. All the systems are fabricated from high performance, durable and lightweight materials. Contractors prefer the quick and simple installation of our structures that saves them money.

The patented line of AquaShieldTM stormwater treatment products that provide high levels of stormwater treatment include the following:

- Aqua-Swirl[®] Stormwater Treatment System: hydrodynamic separator, which provides a highly effective means for the removal of sediment, floating debris and free-oil.
- Aqua-FilterTM Stormwater Filtration System: treatment train stormwater filtration system capable of removing gross contaminants, fine sediments, waterborne hydrocarbons, heavy metals and total phosphorous.


Aqua-Swirl[®]

Filtration Chamber of Aqua-FilterTM system

The Aqua-FilterTM Stormwater Filtration System is designed for projects that require advanced treatment of stormwater runoff. Each system is custom engineered for site-specific needs. The patented Aqua-FilterTM system utilizes a unique "treatment-train" approach that includes an Aqua-Swirl[®] hydrodynamic separator for pretreatment followed by a filtration chamber for secondary treatment. A variety of natural filter media are used in order to complete the treatment process by polishing the stormwater prior to discharge. Independent laboratory and field performance verifications have shown that the Aqua-FilterTM system achieves over 80% suspended solids removal efficiency on a net annual basis.

Aqua-FilterTM Stormwater Filtration System showing Aqua-Swirl[®] for pretreatment followed by filtration chamber for secondary treatment prior to discharge.

The Aqua-FilterTM Stormwater Filtration System is designed for sites that require advanced treatment of runoff stormwater to meet stringent discharge requirements. Each Aqua-FilterTM system is custom engineered and utilizes a unique approach for pollutant removal. This patented configuration begins with the removal of sediment, debris and free-floating oil by the Aqua-Swirl[®] Stormwater Treatment System (pretreatment chamber), followed by the removal of fine sediments and other waterborne pollutants by the filtration chamber. The system can be designed for new construction projects or be used for retrofit applications. Inspection and maintenance are made simplified with oversized risers that allow for both examination and cleanout. An ingress/egress ladder is provided for the filtration chamber to better facilitate maintenance. Each Aqua-FilterTM is constructed of high performance, lightweight and durable materials including polymer coated steel (PCS) or high density polyethylene (HDPE). These materials eliminate the need for heavy lifting equipment during installation.

Third party performance and functionality testing has demonstrated Total Suspended Solids (TSS) removals of greater than 80% on a net annual basis. In addition, the Aqua-FilterTM is effective for the removal of other pollutants including petroleum hydrocarbons as well as total phosphorus and various heavy metals when bound to particulate material.

The Aqua-FilterTM Stormwater Filtration System operates under gravitational and hydrodynamic forces with no moving parts or valves which simplifies the treatment process. The Aqua-FilterTM system is typically installed to operate in an off-line configuration. However, local jurisdictions may allow for in-line (on-line) installations. AquaShieldTM recommends that local guidelines be confirmed during the site design process to ensure the proper installation rules for an Aqua-FilterTM system.

Step 1: Pretreatment by Aqua-Swirl[®]

Peripheral pretreatment of stormwater is not necessary when using the Aqua-FilterTM. In fact, each Aqua-FilterTM is custom engineered to utilize a unique treatment train approach. Operation begins when stormwater enters the Aqua-Swirl[®] through a tangential inlet pipe that produces a circular (or vortex) flow pattern that causes contaminates to settle to the base of the unit. Since stormwater flow is intermittent by nature, the Aqua-Swirl[®] retains water between storm events providing both dynamic and quiescent settling of solids. The dynamic settling occurs during each storm event while the quiescent settling takes place between successive storms. A combination of gravitational and hydrodynamic drag forces encourages the solids to drop out of the flow and migrate to the center of the chamber where velocities are the lowest. The treated flow then exits the Aqua-Swirl[®] behind the arched outer baffle. The top of the baffle is sealed across the treatment channel, thereby eliminating floatable pollutants from escaping the system. A vent pipe is extended up the riser to expose the backside of the baffle to atmospheric conditions, preventing a siphon from forming at the bottom of the baffle.

Aqua-Swirl[®] component of the Aqua-FilterTM System. Note tangential inlet and outlet piping stubouts.

Page **5** of **18** © AquaShieldTM, Inc. 2014. All rights reserved.

Step 2: Secondary Treatment by Filtration Chamber

The filtration chamber in the Aqua-FilterTM is designed to refine and enhance the stormwater quality prior to discharge into sensitive receiving waters. As the pretreated water enters the filtration chamber, it is evenly distributed across the filter bed and allowed to permeate by gravity flow through the filter media. Either a downflow or upflow configuration can be used for the filtration chamber. The filter media are contained in individual and durable nylon mesh containers (bags) positioned in such manner to avoid short circuiting (see Filter Replacement).

Filtration chamber of Aqua-FilterTM system being lowered into place. Access risers are visible along the top length of the chamber.

The natural filter media used for filtration is capable of removing the remaining waterborne pollutants such as fine-grained sediment, oil, total phosphorus, and heavy metals (e.g., copper, lead, zinc). The most commonly used media is coarse perlite. Other filter media such as zeolite, granulated activated carbon, leaf compost, bone char and various proprietary media blends are available to target site-specific pollutant treatment goals and discharge limits.

The long term performance of any stormwater treatment structure, including manufactured or land based systems, depends on a consistent maintenance plan. Inspection and maintenance functions are simple and easy for AquaShieldTM Stormwater Treatment Systems allowing all inspections to be performed from the surface. It is important that a routine inspection and maintenance program be established for each unit based on: (a) the volume or load of the contaminants of concern, (b) the frequency of releases of contaminants at the facility or location, and (c) the nature of the area being drained.

In order to ensure that our systems are being maintained properly, AquaShieldTM offers a maintenance solution to all of our customers. We will arrange to have maintenance performed.

Distinctive AquaShieldTM logo is visible on manhole covers for each system.

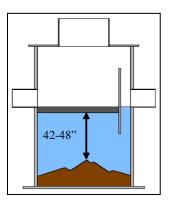
Filter containers (bags) are easily managed.

All AquaShieldTM products can be inspected from the surface, eliminating the need to enter the systems to determine when cleanout should be performed. In most cases, AquaShieldTM recommends a quarterly inspection for the first year of operation to develop an appropriate schedule of maintenance. Based on experience of the system's first year in operation, we recommend that the inspection schedule be revised to reflect site-specific conditions being encountered. Typically, the inspection schedule for subsequent years is reduced to semi-annual inspection events.

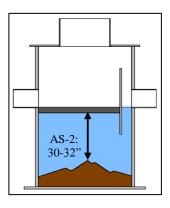
Discussions pertaining to maintenance of the Aqua-Swirl[®] and Filtration Chamber are provided below

The Aqua-Swirl[®] has been designed to minimize and simplify the inspection and maintenance process. The single swirl chamber system can be inspected and maintained entirely from the surface thereby eliminating the need for confined space entry. There are no areas of the structure that are blocked from visual inspection or periodic cleaning. Inspection of any free-floating oil and floatable debris can be directly observed and maintained through the manhole access provided directly over the swirl chamber.

Aqua-Swirl[®] Inspection Procedure


To inspect the Aqua-Swirl[®] pretreatment chamber, a hook is needed to remove the manhole cover. AquaShieldTM provides a customized manhole cover with our distinctive logo to make it easy for maintenance crews to locate a system in the field. We also provide a permanent metal information plate affixed inside the access riser which provides our contact information, the Aqua-Swirl[®] model size and serial number.

The only tools needed to inspect the Aqua-Swirl[®] system are a flashlight and a measuring device such as a stadia rod or pole. Given the easy and direct accessibility provided, floating oil and debris can be observed directly from the surface. Sediment depths can easily be determined by lowering a measuring device to the top of the sediment pile and to the surface of the water.



Sediment inspection using a stadia rod in a single chamber.

The maintenance trigger for Aqua-Swirl[®] Models AS-3 through AS-13 occurs when the sediment pile is within 42 to 48 inches of the standing water surface. For the Aqua-Swirl[®] Model AS-2, maintenance is needed when the top of the sediment pile is measured to be 30 to 32 inches below the standing water surface.

Maintenance trigger for Aqua-Swirl[®] Models AS-3 through AS-13 occurs when sediment pile is 42-48 inches below water surface.

Maintenance trigger for Aqua-Swirl[®] Model AS-2 occurs when sediment pile is 30-32" inches below water surface.

It should be noted that in order to avoid underestimating the volume of sediment in the chamber, the measuring device must be carefully lowered to the *top* of the sediment pile. Keep in mind that the finer sediment at the top of the pile may offer less resistance to the measuring device than the larger particles which typically occur deeper within the sediment pile.

The Aqua-Swirl[®] design allows for the sediment to accumulate in a semi-conical fashion as illustrated above. That is, the depth to sediment as measured below the water surface may be less in the center of the swirl chamber; and likewise, may be greater at the edges of the swirl chamber.

Aqua-Swirl[®] Cleanout Procedure

Cleaning the Aqua-Swirl[®] is simple and quick. Free-floating oil and floatable debris can be observed and removed directly through the 30-inch service access riser provided. A vacuum truck is typically used to remove the accumulated sediment and debris. An advantage of the Aqua-Swirl[®] design is that the entire sediment storage area can be reached with a vacuum hose from the surface (reaching all the sides). Since there are no multiple or limited (hidden or "blind") chambers in the Aqua-Swirl[®], there are no restrictions to impede on-site maintenance tasks.

Disposal of Recovered Materials from Aqua-Swirl[®]

Disposal of recovered material is typically handled in the same fashion as catch basin cleanouts. AquaShieldTM recommends that all maintenance activities be performed in accordance with appropriate health and safety practices for the tasks and equipment being used. AquaShieldTM also recommends that all materials removed from the Aqua-Swirl[®] and any external structures (e.g, bypass features) be handled and disposed in full accordance with any applicable local and state requirements.

Vacuum truck quickly cleans the Aqua-Swirl[®] from a single chamber

The filter media is also easily observed from the surface. Manhole covers are spaced over the entire filtration bed to provide easy access. AquaShieldTM provides a customized manhole cover with our logo to make it easy for maintenance crews to locate a system in the field. An entry riser provides direct access into the filtration chamber with a permanent ladder welded into the downstream section of the filtration chamber. This additional access allows for the vacuuming of any standing water and an unobstructed access to the downstream side of the filtra bed.

A permanent ingress/egress ladder provides access to filter chamber. Note metal product identification plate above ladder.

Initially, perlite filter media is light tan or white in color. When the media color turns black or dark brown, it has become saturated due to pollutant loading and requires replacement. Call toll free (888) 344-9044 to order replacement filters.

Page **10** of **18** © AquaShieldTM, Inc. 2014. All rights reserved.

Replacement of the filtration media typically requires entry into the filtration chamber by one of a two-member maintenance crew. Confined space entry methods should be followed by the maintenance crew when removing and replacing the filters. The spent filter containers are normally retrieved from the filter chamber by a second crewmember at the surface through the multiple 30-inch risers spaced across the top of the filter bed. In addition, the filter containers can be accessed directly from within the filtration chamber via a vertical removable panel (bulkhead door) at the rear of the filter bed and directly across from the ladder.

Filter Media Disposal

Disposal of recovered material is typically handled in the same fashion as catch basin cleanouts. AquaShieldTM recommends that all maintenance activities be performed in accordance with appropriate health and safety practices for the tasks and equipment being used. AquaShieldTM also recommends that all materials removed from the Aqua-Swirl[®] and any external structures (e.g, bypass features) be handled and disposed in full accordance with any applicable local and state requirements.

Spent filter media can often be recycled or sent to a permitted lined landfill. Always check local regulations to ensure proper disposal of spent filter media.

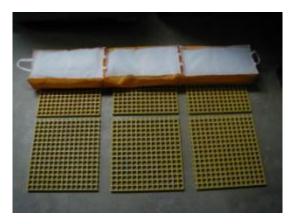
Filter Media Replacement

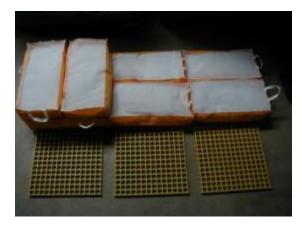
Instructions and photographs are provided on page 12 showing the procedures to follow to install fresh filter media containers. The bottom of two courses is placed on the fiberglass grates. Cargo netting is used across the top course of the filter containers to secure them in place.

Cargo Netting Installation

Cargo netting is used to secure filter containers in place after containers are installed in the appropriate orientation within the filtration chamber. *Cargo netting is placed on top of the top course of filter containers* and stretched into place using provided heavy duty cable ties. The netting is cable tied to anchor blocks and attached to the side walls of the filtration chamber. It is important to install the netting in such a way as to both cover the entire surface area of the containers while stretching netting snuggly to minimize container movement under high flow conditions. Netting installation is complete when all surface area of filter containers are covered with netting and netting is secured with cable ties to anchor blocks.

Page **11** of **18** © AquaShieldTM, Inc. 2014. All rights reserved.


INSTALLATION INSTRUCTIONS for FILTER CONTAINERS


(1) Bottom Grates found in chamber

(3) Second row

(2) First row first course

(4) Second course started

(5) Second course complete

Aqua-FilterTM Inspection and Maintenance Manual Work Sheets

SITE and OWNER INFORMATION

Site Name:	
Site Location:	
Date:	Time:
Inspector Name:	
Inspector Company:	Phone #:
Owner Name:	
Owner Address:	
Owner Phone #:	Emergency Phone #:

INSPECTION

Note: Aqua-FilterTM system is a treatment train including Aqua-Swirl[®] pretreatment hydrodynamic separator and filtration chamber.

I. Floatable Debris and Oil in Aqua-Swirl[®]

- 1. Remove manhole lid to expose liquid surface of the Aqua-Swirl[®].
- 2. Remove floatable debris with basket or net if any present.
- 3. If oil is present, measure its depth. Clean liquids from system if one half (¹/₂) inch or more oil is present.

Note: Water in Aqua-Swirl[®] can appear black and similar to oil due to the dark body of the surrounding structure. Oil may appear darker than water in the system and is usually accompanied by oil stained debris (e.g. Styrofoam, etc.). The depth of oil can be measured with an oil/water interface probe, a stadia rod with water finding paste, a coliwasa, or collect a representative sample with a jar attached to a rod.

II. Sediment Accumulation in Aqua-Swirl[®]

- 1. Lower measuring device (e.g. stadia rod) into swirl chamber through service access provided until top of sediment pile is reached
- 2. Record distance to top of sediment pile from top of standing water: ______ inches
- 3. For Aqua-Swirl[®] Models AS-3 through AS-13, schedule cleaning if value in Step #2 is 48 to 42 inches or less.
- 4. For Aqua-Swirl[®] Model AS-2, schedule cleaning if value in Step #2 is 32 to 30 inches or less.

Page **13** of **18** © AquaShieldTM, Inc. 2014. All rights reserved.

III. Filtration Chamber

- 1. Remove manhole lid(s) to expose filter media bed and access ingress/egress ladder. At a minimum, one manhole lid will be present to access ladder. Larger filtration chamber sizes may have one or more manhole lids to access filter media bed.
- 2. Enter filtration chamber via ladder or through access riser(s) over filter bed. Note that water may be present at minimal depths in the filtration chamber prior to clean-out during inspection.
- 3. Remove bulkhead door (gate) at downstream end of filtration chamber and across from ladder (Figure 1).
- 4. Remove filter grate covers/cargo nets and filters through access risers located along filtration chamber length or through ingress/egress ladder manhole.
- 5. Visually inspect filter media noting color and saturation or contaminants.
- 6. If (perlite) media is dark brown or black, the media is fully spent and should be replaced (Figure 2).

Figure 1. Removable bulkhead door across from ingress/egress ladder at rear of filtration chamber.

Figure 2. Perlite filter media needs replacement.

- 7. Contact AquaShieldTM for replacement filter media containers at (888) 344-9044, or <u>info@aquashieldinc.com</u>.
- 8. Schedule cleaning as described below.

IV. Diversion Structures (External Bypass Features)

Diversion (external bypass) structures should be inspected as follows:

- 1. Inspect weir or other bypass feature for structural decay or damage. Weirs are more susceptible to damage than off-set piping and should be checked to confirm that they are not crumbling (concrete or brick) or decaying (steel).
- 2. Inspect diversion structure and bypass piping for signs of structural damage or blockage from debris or sediment accumulation.
- 3. When feasible, measure elevations on diversion weir or piping to ensure it is consistent with site plan designs.

Page **14** of **18** © AquaShieldTM, Inc. 2014. All rights reserved.

4. Inspect downstream (convergence) structure(s) for sign of blockage or structural failure as noted above.

CLEANING

Schedule cleaning with local vactor company or AquaShieldTM to remove sediment, oil and other floatable pollutants. The spent filter containers and captured material generally does not require special treatment or handling for disposal. Site-specific conditions or the presence of known contaminants may necessitate that appropriate actions be taken to clean and dispose of materials captured and retained by the Aqua-FilterTM system. All cleaning activities should be performed in accordance with property health and safety procedures.

AquaShieldTM always recommends that all materials removed from the Aqua-FilterTM system (Aqua-Swirl[®] and filtration chamber) during the maintenance process be handled and disposed in accordance with local and state environmental or other regulatory requirements.

MAINTENANCE SCHEDULE

I. During Construction

Inspect the Aqua-FilterTM system (Aqua-Swirl[®] and filtration chamber) every three (3) months and clean the system as needed. The Aqua-FilterTM should be inspected and cleaned at the end of construction regardless of whether it has reached its maintenance triggers including any of the following:

- depth to sediment is 42 to 48 inches water surface in Aqua-Swirl[®] Models AS-3 through AS-13,
- depth to sediment is 30 to 32 inches water surface in Aqua-Swirl[®] Model AS-2
- Oil is present to the degree that requires cleaning, and/or
- filter media exhibits black to dark brown color and/or is saturated with contaminants.

II. First Year Post-Construction

Inspect the Aqua-FilterTM every three (3) months and clean the system as needed.

Inspect and clean the system once annually regardless of whether it has reached its sediment or floatable pollutant storage capacity.

III. Second and Subsequent Years Post-Construction

If the Aqua-FilterTM did not reach full sediment or floatable pollutant capacity in the First Year Post-Construction period, the system can be inspected and cleaned once annually.

If the Aqua-FilterTM reached full sediment or floatable pollutant capacity in less than 12 months in the First Year Post-Construction period, the system should be inspected once

Page **15** of **18** © AquaShieldTM, Inc. 2014. All rights reserved.

every six (6) months and cleaned as needed. The Aqua-FilterTM should be cleaned annually regardless of whether it reaches its sediment or floatable pollutant capacity.

IV. Bypass Structures

Bypass structures should be inspected whenever the Aqua-FilterTM is inspected. Maintenance should be performed on bypass structures as needed.

MAINTENANCE COMPANY INFORMATION

Company Name:		
Street Address:		
City:	State/Prov.:	Zip/Postal Code:
Contact:		Title:
Office Phone:	Cell Phone:	
AC	CTIVITY LOG	
Date of Cleaning:		ection should be 3 months from or first year).
Time of Cleaning: Start:	End	:
Date of Next Inspection:		
Floatable debris present in Aqua-Swirl [®] :	Yes No	
Notes:		
Oil present in Aqua-Swirl [®] : Yes Measurement method and notes:	No Oil depth (ir	nches):
Filter Media Needs Replacement: Yes Filter grate / cargo netting needs repair/rep	No lacement: Yes	No

Page **16** of **18** © AquaShieldTM, Inc. 2014. All rights reserved.

Number of Filter Contai					
Type of Filter Media:	Perlite	Other(s):			
Other Filtration Chamber Needs and Observations:					

STRUCTURAL CONDITIONS and OBSERVATIONS

Structural dam	nage:	Yes	No	Where:
Structural wea	r:	Yes	No	Where:
Odors present:		Yes	No	Describe:
Clogging:	Yes	No	Descri	be:
Other Observa	tions:			

NOTES

Additional Comments and/or Actions To Be Taken	Time Frame

ATTACHMENTS

- Attach site plan showing Aqua-FilterTM location.
 Attach detail drawing showing Aqua-FilterTM dimensions and model number.
- Attach details showing basic design and elevations (where feasible) of diversion • configuration.

Page **17** of **18** © AquaShieldTM, Inc. 2014. All rights reserved.

Aqua-FilterTM

TABULAR MAINTENANCE SCHEDULE

Date Construction Started:

Date Construction Ended:

During Construction

		Month										
Activity	1	2	3	4	5	6	7	8	9	10	11	12
Inspect and Clean as needed			Х			Х			Х			X
Inspect Bypass and maintain as needed			Х			Х			Х			X
Clean System*												X*

* Aqua-FilterTM should be cleaned <u>once a year</u> regardless of whether it has reached full pollutant storage capacity. In addition, the system should be cleaned at the <u>end of construction</u> regardless of whether it has reach full pollutant storage capacity.

First Year Post-Construction

		Month										
Activity	1	2	3	4	5	6	7	8	9	10	11	12
Inspect and Clean as needed			Х			Х			Х			Х
Inspect Bypass and maintain as needed			Х			Х			Х			Х
Clean System*												X*

* Aqua-FilterTM should be cleaned <u>once a year</u> regardless of whether it has reached full pollutant storage capacity.

Second and Subsequent Years Post-Construction

		Month										
Activity	1	2	3	4	5	6	7	8	9	10	11	12
Inspect and Clean as needed												X*
Inspect Bypass, maintain as needed												X*
Clean System*												X*

* If the Aqua-FilterTM did <u>not</u> reach full sediment or floatable pollutant capacity in the First Year Post-Construction period, the system can be inspected and cleaned once annually.

If the Aqua-FilterTM <u>reached</u> full sediment or floatable pollutant capacity in less than 12 months in the First Year Post-Construction period, the system should be inspected once every six (6) months or more frequently if past history warrants, and cleaned as needed. The Aqua-FilterTM should be cleaned annually regardless of whether it reaches its full sediment or floatable pollutant capacity.

Page **18** of **18** © AquaShieldTM, Inc. 2014. All rights reserved.

Stormwater Treatment System Inspection and Maintenance Manual

AquaShield[™], Inc. 2733 Kanasita Drive Suite 111 Chattanooga, TN 37343 Toll free (888) 344-9044 Phone: (423) 870-8888 Fax: (423) 826-2112 Email: info@aquashieldinc.com <u>www.aquashieldinc.com</u>

June 2022

© AquaShieldTM, Inc. 2022. All rights reserved.

Aqua-Swirl® Stormwater Treatment System

The Aqua-Swirl[®] Stormwater Treatment System (Aqua-Swirl[®]) is a vortex-type hydrodynamic separator designed and supplied by AquaShieldTM, Inc. (AquaShieldTM). Aqua-Swirl[®] technology removes pollutants including suspended solids, trash, floatables and free-floating oil from stormwater runoff. Both treatment and storage are accomplished in the single swirl chamber without the use of multiple or hidden, blind access chambers.

Floatable debris in the Aqua-Swirl®

The long term performance of any stormwater treatment structure, including manufactured or land based systems, depends on a consistent maintenance plan. Inspection and maintenance functions are simple and easy for the Aqua-Swirl[®] allowing all inspections to be performed from the surface.

It is important that a routine inspection and maintenance program be established for each unit based on: (a) the volume or load of the contaminants of concern, (b) the frequency of releases of contaminants at the facility or location, and (c) the nature of the area being drained.

Example of Aqua-Swirl® manhole cover

The Aqua-Swirl[®] can be inspected from the surface thereby eliminating the need to enter the system to determine when cleanout should be performed. AquaShieldTM recommends in most cases that a quarterly inspection take place for the first year of operation to develop an appropriate schedule of maintenance. Based on experience of the system's first year in operation, we recommend that the inspection schedule be revised to reflect the site-specific conditions encountered. The typical inspection schedule for subsequent years is reduced to semi-annual inspection events. **Table 1** below lists the available Aqua-Swirl[®] models as well their inner diameters, oil/debris storage capacities and the sediment storage capacities.

Aqua-Swirl® Model	Inner Diameter (ft)	Oil/Debris Storage Capacity (gal)	Sediment Storage Capacity (ft ³)
AS-2	2.5	37	6
AS-3	3.5	110	11
AS-4	4.5	190	19
AS-5	5.5	270	23
AS-6	6.5	390	33
AS-7	7.5	540	45
AS-8	8.5	710	58
AS-9	9.5	910	74
AS-10	10.5	1,130	91
AS-11	11.5	1,422	110
AS-12	12.5	1,698	131
AS-13	13.0	1,986	154
AS-XX		Custom*	

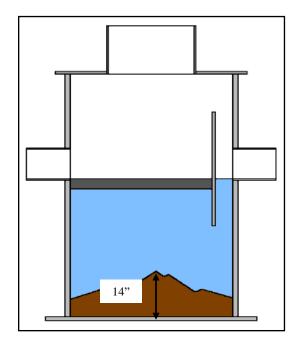
Table 1. Aqua-Swirl®	Storage	Capacities
----------------------	---------	------------

* Custom designs to meet site-specific criteria, can include multiple (twin) units for increased flow and materials storage capacity.

Maintenance

The Aqua-Swirl[®] has been designed to minimize and simplify the inspection and maintenance process. The single chamber of the system can be inspected and maintained entirely from the surface thereby eliminating the need for confined space entry. There are no areas of the structure that are blocked from visual inspection or periodic cleaning. Inspection of any free-floating oil and floatable trash can be directly observed and maintained through the manhole access provided directly over the swirl chamber. If so equipped, the trash screen can be exposed once the water is removed from the unit and inspected.

Aqua-Swirl[®] Inspection Procedure


To inspect the Aqua-Swirl[®], a hook is typically needed to remove the manhole cover. AquaShieldTM provides a customized manhole cover with our distinctive logo to make it easy for maintenance crews to locate the system in the field. We also provide a permanent metal information plate affixed inside the access riser which provides our contact information, the Aqua-Swirl[®] model size, and serial number.

The only tools needed to inspect the Aqua-Swirl[®] system are a flashlight and a measuring device such as a stadia rod or pole. Given the easy and direct accessibility provided, floating oil and debris can be observed directly from the surface. Sediment depths can easily be determined by lowering a measuring device to the top of the sediment pile and to the surface of the water.

It should be noted that in order to avoid underestimating the volume of sediment in the chamber, the measuring device must be carefully lowered to the *top* of the sediment pile. Keep in mind that the finer sediment at the top of the pile may offer less resistance to the measuring device than the larger particles which typically occur deeper within the sediment pile. The Aqua-Swirl[®] design allows for the captured sediment to accumulate in a semi-conical fashion as illustrated below. That is, the depth to sediment as measured below the water surface may be less in the center of the swirl chamber; and likewise, may be greater at the edges of the swirl chamber.

Sediment inspection using a stadia rod

Maximum recommended sediment depth prior to cleanout is 14 inches for all Aqua-Swirl[®] models (not to scale)

Aqua-Swirl® Cleanout Procedure

Cleaning the Aqua-Swirl[®] is simple and quick. Free-floating oil and floatable trash can be observed and removed directly through the 30-inch service access riser provided. A vacuum truck is typically used to remove the accumulated sediment and debris. An advantage of the Aqua-Swirl[®] design is that the entire sediment storage area can be reached with a vacuum hose from the surface reaching all the sides. Since there are no multiple or limited (blind) access chambers in the Aqua-Swirl[®], there are no restrictions to impede on-site maintenance tasks. If applicable, the trash screen can be reached from the surface and cleaned with a vacuum hose.

Disposal of Recovered Materials

AquaShieldTM recommends that all maintenance activities be performed in accordance with appropriate health and safety practices for the tasks and equipment being used. AquaShieldTM also recommends that all materials removed from the Aqua-Swirl[®] and any external bypass structures (divergent and convergent) be handled and disposed of in full accordance with any applicable local and state requirements.

Vacuum (vactor) truck quickly cleans the single open access swirl chamber

Aqua-Swirl[®] Inspection and Maintenance Work Sheets on following pages

Aqua-Swirl[®] Inspection and Maintenance Work Sheets

SITE and OWNER INFORMATION

Site Name:	
Site Location:	
Date:	Time:
Inspector Name:	
Inspector Company:	Phone #:
Owner Name:	
Owner Address:	
Owner Phone #:	Emergency Phone #:

INSPECTIONS

I. Floatable Trash/Debris and Oil

- 1. Remove manhole lid to expose liquid surface of the Aqua-Swirl[®].
- 2. Remove floatable trash/debris with basket or net if any present.
- 3. If oil is present, measure its depth. Clean liquids from system if one half (¹/₂) inch or more of oil and/or trash is present.
- 4. If applicable, clean trash screen surface with vacuum hose.

Note: Water in Aqua-Swirl[®] can appear black and similar to oil due to the dark body of the surrounding structure. Oil may appear darker than water in the system and is usually accompanied by oil stained debris (e.g. Styrofoam, etc.). The depth of oil can be measured with an oil/water interface probe, a stadia rod with water finding paste, a coliwasa, or collect a representative sample with a jar attached to a rod.

II. Sediment Accumulation

- 1. Lower measuring device (e.g. stadia rod) into swirl chamber through service access provided until top of sediment pile is reached.
- 2. Record distance to top of sediment pile from top of standing water: ______ inches.
- 3. Maximum recommended sediment depth prior to cleanout is 14 inches for all models. Consult system shop drawing for treatment chamber depth as measured from the inlet pipe invert to base of the unit.

III. Diversion Structures (External Bypass Features)

If a diversion (external bypass) configuration is present, it should be inspected as follows:

- 1. Inspect weir or other bypass feature for structural decay or damage. Weirs are more susceptible to damage than off-set piping and should be checked to confirm that they are not crumbling (concrete or brick) or decaying (steel).
- 2. Inspect diversion structure and bypass piping for signs of structural damage or blockage from debris or sediment accumulation.
- 3. When feasible, measure elevations on diversion weir or piping to ensure it is consistent with site plan designs.
- 4. Inspect downstream (convergence) structure(s) for sign of blockage or structural failure as noted above.

CLEANING

Schedule cleaning with local vactor company to remove sediment, trash, oil and other floatable pollutants. The captured material generally does not require special treatment or handling for disposal. Site-specific conditions or the presence of known contaminants may necessitate that appropriate actions be taken to clean and dispose of materials captured and retained by the Aqua-Swirl[®]. All cleaning activities should be performed in accordance with property health and safety procedures.

AquaShieldTM always recommends that all materials removed from the Aqua-Swirl[®] during the maintenance process be handled and disposed in accordance with local and state environmental or other regulatory requirements.

MAINTENANCE SCHEDULE

I. During Construction

Inspect the Aqua-Swirl[®] full capture device every three (3) months and clean the system as needed. The Aqua-Swirl[®] should be inspected and cleaned at the end of construction regardless of whether it has reached its maintenance trigger.

II. First Year Post-Construction

Inspect the Aqua-Swirl[®] every three (3) months and clean the system as needed.

Inspect and clean the system once annually regardless of whether it has reached its sediment, trash or floatable pollutant storage capacity.

III. Second and Subsequent Years Post-Construction

If the Aqua-Swirl[®] did not reach full sediment or floatable trash capacity in the First Year Post-Construction period, the system can be inspected and cleaned once annually.

If the Aqua-Swirl[®] reached full sediment, trash or floatable pollutant capacity in less than 12 months in the First Year Post-Construction period, the system should be inspected once every six (6) months and cleaned as needed.

The Aqua-Swirl[®] should be cleaned annually regardless of whether it reaches its sediment, trash or floatable pollutant capacity.

IV. Bypass Structures

Bypass structures should be inspected whenever the Aqua-Swirl[®] is inspected. Maintenance should be performed on bypass structures as needed.

MAINTENANCE COMPANY INFORMATION

Company Name:	
Street Address:	
City:	State/Prov.: Zip/Postal Code:
Contact:	Title:
Office Phone:	Cell Phone:
ACT	IVITY LOG
Date of Cleaning:	(Next inspection should be 3 months from this data for first year).
Time of Cleaning: Start:	End:
Date of Next Inspection:	
Floatable debris present: Yes	No
Notes:	
	th (inches):
Measurement method and notes:	

STRUCTURAL CONDITIONS and OBSERVATIONS

Structural damage:		Yes	No	Where:
Structural wear:		Yes	No	Where:
Odors present:		Yes	No	Describe:
Clogging:	Yes	No	Descri	be:
Other Observa	tions:	<u> </u>		

NOTES

Additional Comments and/or Actions To Be Taken	Time Frame

ATTACHMENTS

- Attach site plan showing Aqua-Swirl[®] location.
- Attach detail drawing showing Aqua-Swirl[®] dimensions and model number.
- If a diversion configuration is used, attach details showing basic design and elevations (where feasible).

Aqua-Swirl[®]

TABULAR MAINTENANCE SCHEDULE

Date Construction Started:

Date Construction Ended:

During Construction

		Month										
Activity	1	2	3	4	5	6	7	8	9	10	11	12
Inspect and Clean as needed			Х			Х			Х			X
Inspect Bypass and maintain as needed			Х			Х			Х			X
Clean System*												X*

* The Aqua-Swirl[®] should be cleaned <u>once a year</u> regardless of whether it has reached full pollutant storage capacity. In addition, the system should be cleaned at the <u>end of construction</u> regardless of whether it has reach full pollutant storage capacity.

First Year Post-Construction

		Month										
Activity	1	2	3	4	5	6	7	8	9	10	11	12
Inspect and Clean as needed			Х			Х			Х			Х
Inspect Bypass and maintain as needed			Х			Х			Х			Х
Clean System*												X*

* The Aqua-Swirl[®] should be cleaned <u>once a year</u> regardless of whether it has reached full pollutant storage capacity.

Second and Subsequent Years Post-Construction

		Month										
Activity	1	2	3	4	5	6	7	8	9	10	11	12
Inspect and Clean as needed												X*
Inspect Bypass, maintain as needed												X*
Clean System*												X*

* If the Aqua-Swirl[®] did <u>not</u> reach full sediment or floatable pollutant capacity in the First Year Post-Construction period, the system can be inspected and cleaned once annually.

If the Aqua-Swirl[®] <u>reached</u> full sediment, trash or floatable pollutant capacity in less than 12 months in the First Year Post-Construction period, the system should be inspected once every six (6) months or more frequently if past history warrants, and cleaned as needed. The Aqua-Swirl[®] should be cleaned annually regardless of whether it reaches its full sediment, trash or floatable pollutant capacity.

Contactor® & Recharger® Stormwater Chambers

Operation and Maintenance Guidelines for CULTEC Stormwater Management Systems

The Founder of Plastic Chamber Technology www.cultec.com | 1(800) 4-CULTEC | f in

Published by **CULTEC, Inc.** P.O. Box 280 878 Federal Road Brookfield, Connecticut 06804 USA www.cultec.com

Copyright Notice

© 2017 CULTEC, Inc. All rights reserved. Printed in the USA.

This document and any accompanying CULTEC products are copyrighted by CULTEC, Inc. Any reproduction and/or distribution without prior written consent from CULTEC, Inc. is strictly prohibited.

Disclaimers:

The drawings, photographs and illustrations shown in this document are for illustrative purposes only and are not necessarily to scale. Actual designs may vary.

CULTEC reserves the right to make design and/or specification changes at any time without notice at CULTEC's sole discretion.

CULTEC is not responsible for typographical errors.

Protected by one or more of the following patents:

Protected by one or more of the following patents:

U.S. Patents 6,129,482; 6,322,288; 6,854,925; 7,226,241; 7,806,627; 8,366,346; 8,425,148; and others; U.S. Designs D613819; D638,095; D668,318 and others; Canadian Patent 2,591,255 and others; Community Designs 1092191; 1745209; and others.

CULTEC, the CULTEC logo, RECHARGER, CONTACTOR, HVLV, PAC, STORMFILTER, STORMGENIE and The Chamber with The Stripe are registered trademarks of CULTEC, Inc. Chamber of Choice, 902, HD, 100, 125, 150, 150XL, 180, 280, 330, 330XL, V8, 902, Field Drain Panel, C-1, C-2, C-3, C-4, EZ-24, Landscape Series are trademarks of CULTEC, Inc. All rights reserved.

Contact Information:

For general information on our other products and services, please contact our offices within the United States at (800)428-5832, (203)775-4416 ext. 202, or e-mail us at custservice@cultec.com.

For technical support, please call (203)775-4416 ext. 203 or e-mail tech@cultec.com.

Visit www.cultec.com/downloads.html for Product Downloads and CAD details.

Doc ID: CULG008 05-17 May 2017

These instructions are for single-layer traffic applications only. For multi-layer applications, contact CULTEC. All illustrations and photos shown herein are examples of typical situations. Be sure to follow the engineer's drawings. Actual designs may vary.

This manual contains guidelines recommended by CULTEC, Inc. and may be used in conjunction with, but not to supersede, local regulations or regulatory authorities. OSHA Guidelines must be followed when inspecting or cleaning any structure.

Introduction

The CULTEC Subsurface Stormwater Management System is a high-density polyethylene (HDPE) chamber system arranged in parallel rows surrounded by washed stone. The CULTEC chambers create arch-shaped voids within the washed stone to provide stormwater detention, retention, infiltration, and reclamation. Filter fabric is placed between the native soil and stone interface to prevent the intrusion of fines into the system. In order to minimize the amount of sediment which may enter the CULTEC system, a sediment collection device (stormwater pretreatment device) is recommended upstream from the CULTEC chamber system. Examples of pretreatment devices include, but are not limited to, an appropriately sized catch basin with sump, pretreatment catchment device, oil grit separator, or baffled distribution box. Manufactured pretreatment devices may also be used in accordance with CULTEC chambers. Installation, operation, and maintenance of these devices shall be in accordance with manufacturer's recommendations. Almost all of the sediment entering the stormwater management system will be collected within the pretreatment device.

Best Management Practices allow for the maintenance of the preliminary collection systems prior to feeding the CULTEC chambers. The pretreatment structures shall be inspected for any debris that will restrict inlet flow rates. Outfall structures, if any, such as outlet control must also be inspected for any obstructions that would restrict outlet flow rates. OSHA Guidelines must be followed when inspecting or cleaning any structure.

Operation and Maintenance Requirements

I. Operation

CULTEC stormwater management systems shall be operated to receive only stormwater run-off in accordance with applicable local regulations. CULTEC subsurface stormwater management chambers operate at peak performance when installed in series with pretreatment. Pretreatment of suspended solids is superior to treatment of solids once they have been introduced into the system. The use of pretreatment is adequate as long as the structure is maintained and the site remains stable with finished impervious surfaces such as parking lots, walkways, and pervious areas are properly maintained. If there is to be an unstable condition, such as improvements to buildings or parking areas, all proper silt control measures shall be implemented according to local regulations.

II. Inspection and Maintenance Options

- A. The CULTEC system may be equipped with an inspection port located on the inlet row. The inspection port is a circular cast box placed in a rectangular concrete collar. When the lid is removed, a 6-inch (150 mm) pipe with a screw-in plug will be exposed. Remove the plug. This will provide access to the CULTEC Chamber row below. From the surface, through this access, the sediment may be measured at this location. A stadia rod may be used to measure the depth of sediment if any in this row. If the depth of sediment is in excess of 3 inches (76 mm), then this row should be cleaned with high pressure water through a culvert cleaning nozzle. This would be carried out through an upstream manhole or through the CULTEC StormFilter Unit (or other pretreatment device). CCTV inspection of this row can be deployed through this access port to deter mine if any sediment has accumulated in the inlet row.
- **B.** If the CULTEC bed is not equipped with an inspection port, then access to the inlet row will be through an upstream manhole or the CULTEC StormFilter.

1. Manhole Access

This inspection should only be carried out by persons trained in confined space entry and sewer inspection services. After the manhole cover has been removed a gas detector must be lowered into the manhole to ensure that there are not high concentrations of toxic gases present. The inspector should be lowered into the manhole with the proper safety equipment as per OSHA requirements. The inspector may be able to observe sediment from this location. If this is not possible, the inspector will need to deploy a CCTV robot to permit viewing of the sediment.

2. StormFilter Access

Remove the manhole cover to allow access to the unit. Typically a 30-inch (750 mm) pipe is used as a riser from the StormFilter to the surface. As in the case with manhole access, this access point requires a technician trained in confined space entry with proper gas detection equipment. This individual must be equipped with the proper safety equipment for entry into the StormFilter. The technician will be lowered onto the StormFilter unit. The hatch on the unit must be removed. Inside the unit are two filters which may be removed according to StormFilter maintenance guidelines. Once these filters are removed the inspector can enter the StormFilter unit to launch the CCTV camera robot.

C. The inlet row of the CULTEC system is placed on a polyethylene liner to prevent scouring of the washed stone beneath this row. This also facilitates the flushing of this row with high pressure water through a culvert cleaning nozzle. The nozzle is deployed through a manhole or the StormFilter and extended to the end of the row. The water is turned on and the inlet row is back-flushed into the manhole or StormFilter. This water is to be removed from the manhole or StormFilter using a vacuum truck.

III. Maintenance Guidelines

The following guidelines shall be adhered to for the operation and maintenance of the CULTEC stormwater management system:

- **A.** The owner shall keep a maintenance log which shall include details of any events which would have an effect on the system's operational capacity.
- **B.** The operation and maintenance procedure shall be reviewed periodically and changed to meet site conditions.
- **C.** Maintenance of the stormwater management system shall be performed by qualified workers and shall follow applicable occupational health and safety requirements.
- **D.** Debris removed from the stormwater management system shall be disposed of in accordance with applicable laws and regulations.

IV. Suggested Maintenance Schedules

A. Minor Maintenance

The following suggested schedule shall be followed for routine maintenance during the regular operation of the stormwater system:

Frequency	Action
Monthly in first year	Check inlets and outlets for clogging and remove any debris, as required.
Spring and Fall	Check inlets and outlets for clogging and remove any debris, as required.
One year after commissioning and every third year following	Check inlets and outlets for clogging and remove any debris, as required.

B. Major Maintenance

The following suggested maintenance schedule shall be followed to maintain the performance of the CULTEC stormwater management chambers. Additional work may be necessary due to insufficient performance and other issues that might be found during the inspection of the stormwater management chambers. (See table on next page)

	Frequency	Action
Inlets and Outlets	Every 3 years	Obtain documentation that the inlets, outlets and vents have been cleaned and will function as intended.
	Spring and Fall	 Check inlet and outlets for clogging and remove any debris as re- quired.
CULTEC Stormwater Chambers	2 years after commis- sioning	 Inspect the interior of the stormwater management chambers through inspection port for deficiencies using CCTV or comparable technique.
		• Obtain documentation that the stormwater management chambers and feed connectors will function as anticipated.
	9 years after commis- sioning every 9 years following	Clean stormwater management chambers and feed connectors of any debris.
		• Inspect the interior of the stormwater management structures for deficiencies using CCTV or comparable technique.
		• Obtain documentation that the stormwater management chambers and feed connectors have been cleaned and will function as intended.
	45 years after com- missioning	Clean stormwater management chambers and feed connectors of any debris.
		• Determine the remaining life expectancy of the stormwater man- agement chambers and recommended schedule and actions to reha- bilitate the stormwater management chambers as required.
		• Inspect the interior of the stormwater management chambers for deficiencies using CCTV or comparable technique.
		• Replace or restore the stormwater management chambers in accor- dance with the schedule determined at the 45-year inspection.
		Attain the appropriate approvals as required.
		Establish a new operation and maintenance schedule.
Surrounding Site	Monthly in 1 st year	Check for depressions in areas over and surrounding the stormwater management system.
	Spring and Fall	Check for depressions in areas over and surrounding the stormwater management system.
	Yearly	• Confirm that no unauthorized modifications have been performed to the site.

For additional information concerning the maintenance of CULTEC Subsurface Stormwater Management Chambers, please contact CULTEC, Inc. at 1-800-428-5832.

WQMP Operation & Maintenance (O&M) Plan

Project Name:_____

Prepared for:

Project Name: _____

Address:_____

City, State Zip:_____

Prepared on:

Date:_____

This O&M Plan describes the designated responsible party for implementation of this WQMP, including: operation and maintenance of all the structural BMP(s), conducting the training/educational program and duties, and any other necessary activities. The O&M Plan includes detailed inspection and maintenance requirements for all structural BMPs, including copies of any maintenance contract agreements, manufacturer's maintenance requirements, permits, etc.

8.1.1 Project Information

Project name	
Address	
City, State Zip	
Site size	
List of structural BMPs, number of each	
Other notes	

8.1.2 Responsible Party

The responsible party for implementation of this WQMP is:

Name of Person or HOA Property Manager	
Address	
City, State Zip	
Phone number	
24-Hour Emergency Contact number	
Email	

8.1.3 Record Keeping

Parties responsible for the O&M plan shall retain records for at least 5 years.

All training and educational activities and BMP operation and maintenance shall be documented to verify compliance with this O&M Plan. A sample Training Log and Inspection and Maintenance Log are included in this document.

8.1.4 Electronic Data Submittal

This document along with the Site Plan and Attachments shall be provided in PDF format. AutoCAD files and/or GIS coordinates of BMPs shall also be submitted to the City.

Appendix ____

BMP SITE PLAN

Site plan is preferred on minimum 11" by 17" colored sheets, as long as legible.

BMP OPERATION & MAINTENANCE LOG

Project Name:	
Today's Date:	
Name of Person Performing Activity (Printed):	
Signature:	

BMP Name (As Shown in O&M Plan)	Brief Description of Implementation, Maintenance, and Inspection Activity Performed

Minor Maintenance

Frequency		Action
Monthly in fir	st year	Check inlets and outlets for clogging and remove any debris, as required.
		Notes
🗆 Month 1	Date:	
🗆 Month 2	Date:	
🗆 Month 3	Date:	
🗆 Month 4	Date	
🗆 Month 5	Date:	
🗆 Month 6	Date:	
🗆 Month 7	Date:	
🗆 Month 8	Date:	
🗆 Month 9	Date:	
🗆 Month 10	Date:	
🗆 Month 11	Date:	
🗆 Month 12	Date:	
Spring and Fa	all	Check inlets and outlets for clogging and remove any debris, as required.
		Notes
Spring	Date:	
🗆 Fall	Date:	
Spring	Date:	
🗆 Fall	Date:	
Spring	Date:	
🗆 Fall	Date:	
Spring	Date:	
🗆 Fall	Date:	
Spring	Date:	
🗆 Fall	Date:	
Spring	Date:	
🗆 Fall	Date:	
	r commissioning	Check inlets and outlets for clogging and remove any debris, as required.
-	rd year following	Notes
🗆 Year 1	Date:	
🗆 Year 4	Date:	
🗆 Year 7	Date:	
🗆 Year 10	Date:	
🗆 Year 13	Date:	
🗆 Year 16	Date:	
🗆 Year 19	Date:	
🗆 Year 22	Date:	

Major Maintenance

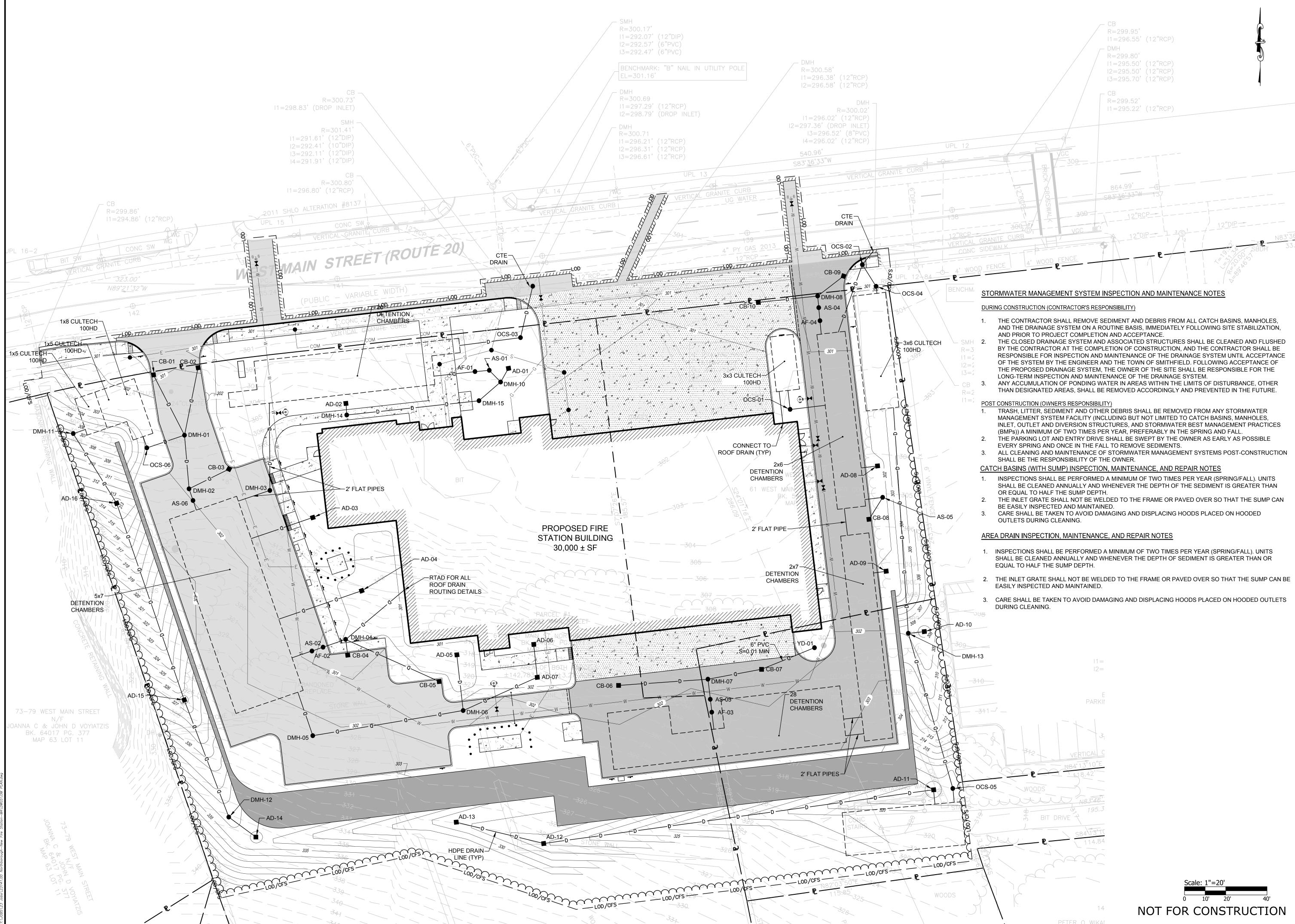
	Frequency		Action	
	Every 3 years		Obtain documentation that the inlets, outlets and vents have been cleaned and will function as intended.	
		1	Notes	
	🗆 Year 1	Date:		
	🗆 Year 4	Date:		
	🗆 Year 7	Date:		
	🗆 Year 10	Date:		
	🗆 Year 13	Date:		
Ś	🗆 Year 16	Date:		
let	🗆 Year 19	Date:		
Out	🗆 Year 22	Date:		
Inlets and Outlets	Spring and Fall		Check inlet and outlets for clogging and remove any debris, as required.	
lets		1	Notes	
In	Spring	Date:		
	🗆 Fall	Date:		
	Spring	Date:		
	🗆 Fall	Date:		
	Spring	Date:		
	🗆 Fall	Date:		
	Spring	Date:		
	🗆 Fall	Date:		
	Spring	Date:		
	Fall	Date:		
	Spring	Date:		
	🗆 Fall	Date:		
hbers	2 years after commissioning		 Inspect the interior of the stormwater management chambers through inspection port for deficiencies using CCTV or comparable technique. 	
r Cham			 Obtain documentation that the stormwater management chambers and feed connectors will function as anticipated. 	
ate			Notes	
tormwa	□ Year 2	Date:		
CULTEC Stormwater Chambers				
CC				

Major Maintenance

	Frequency		Action		
	9 years after commissioning every 9 years following		 Clean stormwater management chambers and feed connectors of any debris. 		
			 Inspect the interior of the stormwater management structures for deficiencies using CCTV or comparable technique. 		
			 Obtain documentation that the stormwater man- agement chambers and feed connectors have been cleaned and will function as intended. 		
			Notes		
	🗆 Year 9	Date:			
	🗆 Year 18	Date:			
	D Year 27	Date:			
bers	D Year 36	Date:			
Cham	45 years after commissioning		 Clean stormwater management chambers and feed connectors of any debris. 		
CULTEC Stormwater Chambers			 Determine the remaining life expectancy of the stormwater management chambers and recommended schedule and actions to rehabilitate the stormwater management chambers as required. 		
EC Stori			 Inspect the interior of the stormwater management chambers for deficiencies using CCTV or comparable technique. 		
CULT			 Replace or restore the stormwater management chambers in accordance with the schedule determined at the 45-year inspection. 		
			□ Attain the appropriate approvals as required.		
			 Establish a new operation and maintenance sched- ule. 		
		1	Notes		
	🗆 Year 45	Date:			

Major Maintenance

	Frequency		Action	
	Monthly in 1	st year	 Check for depressions in areas over and surrounding the stormwater management system. 	
			Notes	
	🗆 Month 1	Date:		
	D Month 2	Date:		
	Month 3	Date:		
	🗆 Month 4	Date:		
	🗆 Month 5	Date:		
	🗆 Month 6	Date:		
	🗆 Month 7	Date:		
	🗆 Month 8	Date:		
	🗆 Month 9	Date:		
	🗆 Month 10	Date:		
	🗆 Month 11	Date:		
	🗆 Month 12	Date:		
	Spring and F	all	 Check for depressions in areas over and surrounding the stormwater management system. 	
ite			Notes	
Surrounding Site	Spring	Date:		
lin	Fall	Date:		
un un	□ Spring	Date:		
l o'	🗆 Fall	Date:		
Sur	□ Spring	Date:		
	🗆 Fall	Date:		
	Spring	Date:		
	🗆 Fall	Date:		
	Spring	Date:		
	🗆 Fall	Date:		
	Spring	Date:		
	□ Fall	Date:		
	Yearly		 Confirm that no unauthorized modifications have been performed to the site. 	
	V_=== 1	Г_	Notes	
	Year 1	Date:		
	D Year 2	Date:		
	□ Year 3	Date:		
	□ Year 4	Date:		
	🗆 Year 5	Date:		
	🗆 Year 6	Date:		
	🗆 Year 7	Date:		



The Founder of Plastic Chamber Technology www.cultec.com | 1(800) 4-CULTEC | f in

8 Federal Road | P.O. Box 280 | Brookfield , CT 06804 US

CULG008 05-17

1= 2=	
510 E	
- 31 1-/ _	
\$ \$ \$ \$ \$ \$ <th></th>	
OCS-05 WOODS	
BIT DRIVE 195.3	
μ <u> </u>	

Scale: 1"=20'			
0	10'	20'	40'
NOT FOR	CON	ISTRI	JCTION

SCALE ADJUS	TMENT GUIDE	
	IE INCH ON	
ORIGINAL	DRAWING	
j j		
jto j		
re l	A	
Ē	, K	
	itree ugh	
	in S oro	
	Mai ithb	
	63 West Main Street Town of Northborough, MA	
	of W	
n	63 Wn	
Northborough New Fire	To	
ht		
rt		
REVISIONS:		
PROJECT NO.:	23141.0	າດ
DATE:	APRIL 23, 202	
SCALE:	1"=2	
DESIGNED BY: CHECKED BY:		
DRAWN BY:	Ał	٢L
APPROVED BY:		
DRAWING TITLE	:	
1		
OPERAT		

DRAWING NO .:

SHEET NO.

OM-1

OF

PARE