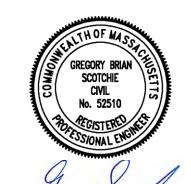
Stormwater Management Report

for:

Common Driveway


85 & 95 West Street Northborough, MA 01532

Project Proponent:

Brant L. Viner Margaret Harling

P.O. Box 295 Ellsworth, ME 04605

> REVISED May 3, 2021

Gregory B. Scotchie, P.E.

TABLE OF CONTENTS	TOC
Locus Map	1
Purpose	2
Project Site	2
Proposed Project	4
Stormwater Management Standards	4
Standard #1 – No New Untreated Discharges	4
Standard #2 – Peak Rate Attenuation	4
Methodology	4
Analysis Summary	5
Standard #3 – Stormwater Recharge	7
Standard #4 – Water Quality volume	7
Standard #5 – Land Uses with Higher Potential Pollutant Loads (LUHPPLs)	8
Standard #6 – Critical Areas	8
Standard #7 – Redevelopment Project	8
Standard #8 – Construction Pollution Prevention and Erosion and Sedimentation Control	8
Standard #9 – Operation and Maintenance Plan	8
Standard #10 – Prohibition of Illicit Discharges	8
Massachusetts Stormwater Report Checklist (Attached)	9
Existing Hydrology	9
Proposed Hydrology	
Appendices	86

Massachusetts Stormwater Report Checklist

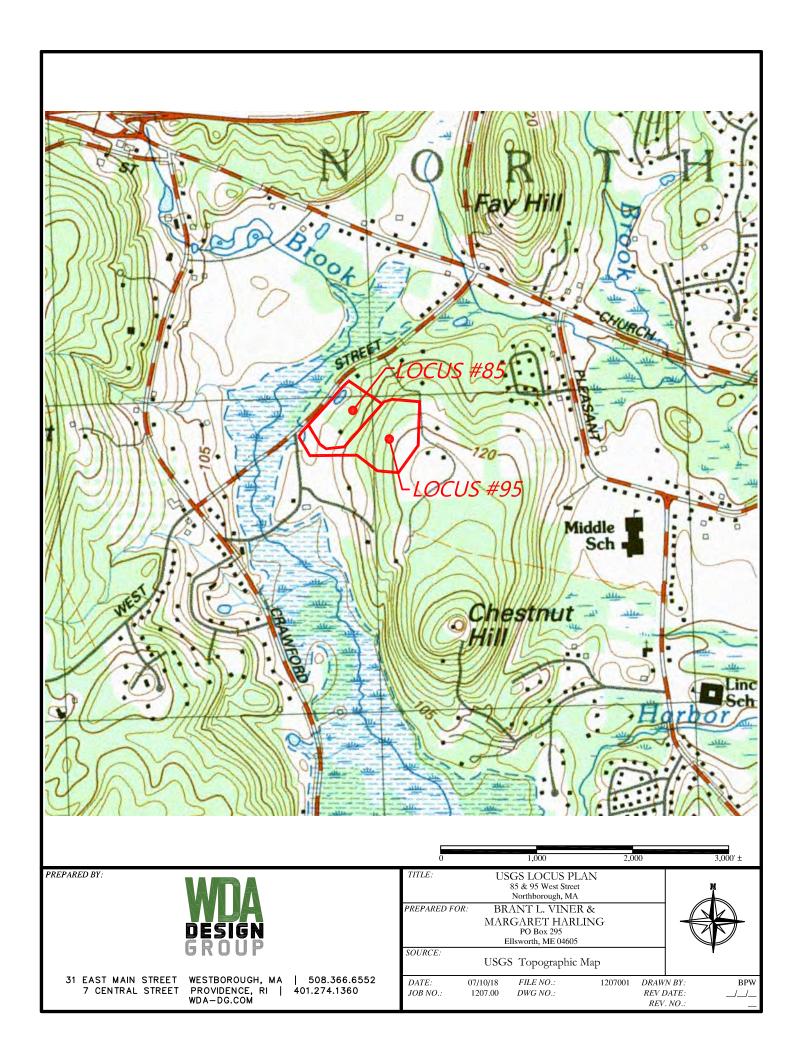
Operation & Maintenance and Long-Term Pollution Prevention Plan

Stormwater Standards Calculations

Hydraulics

NOAA Atlas 14 Point Precipitation Frequency Estimates

Maps


Soils Map Area of Detail and Soil Testing Field Data

FEMA / NFIP / FIRM

Existing Hydrology Plan

Proposed Hydrology Plan

LOCUS MAP

PURPOSE

Hydrologic, hydraulic, and water quality analysis and design calculations have been performed in accordance with the Town of Northborough Stormwater Management Rules and Regulations for the site work proposed on a common driveway located at 85 & 95 West Street in Northborough, MA. The calculations were performed to design stormwater collection and attenuation facilities for the site and to demonstrate that the project will meet the stormwater management standards of the Town of Northborough and the Massachusetts Department of Environmental Protection (MassDEP) Stormwater Management Regulations.

This report describes the existing project site, the proposed project, and analyses performed to develop a stormwater management system that will protect public safety and convenience and minimize environmental impacts.

PROJECT SITE

The Locus Parcels are located on the south side of West Street. 85 West Street contains a single-family home and outbuildings, with a paved driveway accessing from West Street and contains approximately 6.6 acres and has 623.34' of frontage along West Street, beginning approximately 235 northeast of the Cherry Street intersection. 95 West Street is an undeveloped parcel, generally located behind (east) of 85 West Street, but also with frontage along West Street. The undeveloped land at 95 West Street contains 10.7 ± acres and has 235.54 feet of frontage along West Street with the frontage beginning at the intersection with Cherry Street. The properties are located entirely within the Residential B (RB) Zoning District, with a portion of the front area of the lots contained within the Zone 3 Groundwater Overlay District. The property is bound to north by West Street and land of the Commonwealth (DCR) to the north side of the road, and by single family development around the east, south and west. A portion of each property contains an area of Zone A, 100-year flood zone, as shown on the Flood Insurance Rate Map for the Town of Northborough (Community Panel # 25027C0633F, effective date July 16, 2014). The flood zone is associated with Cold Harbor Brook which is located several hundred feet to the north of the property. The flood zone noted for 85 West Street encompasses a small pond located at the front of the property adjacent to West Street. This pond discharges flows via a riser pipe to a culvert under West Street which discharges flows into an intermittent stream channel to the north. This flood zone is indicated at elevation 321.3 to 321.4'. The flood zone noted for 95 West Street is shown located within the field area near the corner of West Street and Cherry Street. This also is connected to a culvert which conveys flows from the field area under Cherry Street. This flood zone in this location is noted as elevation 318.7 to 318.8'. The Property does not contain a designated area of priority habitat of rare species or wildlife, or vernal pools (potential or certified), according to the Natural Heritage Atlas, valid from August 1, 2017.

Soils mapped on-site by the NRCS are primarily Paxton fine sandy loam (map units 305C, 306B/C and 307D), Windsor loamy sand (255B), Chatfield-Holli-Rock outcrop complex (102C) and Woodbridge fine sandy loam (312B).

Two areas of bordering vegetated wetlands were identified on the property, as well as a small, isolated wetland. The isolated wetland is very small (150 sf) and would only be jurisdictional under the local Wetlands Bylaw. WDA delineated the on-site resource areas on April 27, 2018 and these boundaries were determined upon review of the existing vegetation, soils and hydrologic conditions, as well as other visual indicators. Soils along the wetland boundary were reviewed utilizing a hand auger and Munsell soil color chart. All flags have been field survey located and shown on the attached plans.

1207.03-SWM Report.docx - 2 -

The first and largest wetland delineated is located on the land of 85 West Street, generally bordering the small pond and adjacent seeps. This wetland is delineated with blue survey flagging, labeled by flag series WF-1 to WF-91. A small area of upland located in the interior of the wetland was delineated near the easterly side of the wetland, this is defined by flags WF-UA to WF-UI. The wetland boundary begins generally at the edge of the access driveway and West Street and runs along West Street, around the pond and back into the front portion of the property. The pond appears to be a historically manmade pond, approximately 17,000 sf surface area. A 12" vertical standpipe located within the pond, near the West Street side, discharges highwater flows into a 12" corrugated metal culvert which runs under West Street and into an intermittent stream channel. This stream eventually connects with Cold Harbor Brook, approximately 250' to the northwest. Two seeps, one located near the northerly property boundary and the other on the south end of the pond, feed intermittent flows down to the pond, and generally the wetland flagging around and associated with the pond and the seep are delineated by flags WF-20 to WF-74. A natural drainage divide near WF-74 also directs seasonal seeps to the west, near the driveway and West Street, essentially flags WF- 19 to WF-74. During our site visit on April 27, standing water was observed generally around WF-1 to WF-5 and WF-78 to WF-82 and WF-87-91. The wetland areas as defined above are predominately wooded shrub with herbaceous understory, specifically: red maple, elm, gray birch, pussy willow, silky dogwood, highbush blueberry, winterberry, cattail, jewelweed, skunk cabbage, cinnamon and sensitive fern. Adjacent upland areas are dominated by white pine, oak, black and white birch, hickory, ash, red maple, sugar maple, black cherry, hornbeam, teaberry, Pennsylvania sedge and multiflora rose.

The second wetland area is located on the 95 West Street property, within a field area in the southwest portion of the property, near the West and Cherry Street intersection. This wetland receives additional seasonal seeps or stormflows from a shallow grass channel which emanates from a culvert under an adjacent driveway and lawn area, located off site to the south. A shallow channel located at the westerly edge of the wetland directs seasonal flows/seeps to a culvert under Cherry Street. This wetland system is predominately a wet meadow, containing herbaceous species and limited shrubs and trees. This wetland system is delineated by flag series WF-100 to WF-119. Dominate species identified during our site visit were; soft rush, reed canary grass, sensitive fern, goldenrod, cattail, goldenrod, pussy willow, silky dogwood and red maple. Adjacent upland field areas, although not fully grown out, had indicators of miscellaneous field grasses, ground ivy, clover, and goldenrod. These areas have been historically mowed as well.

The final wetland area delineated is a small, isolated wet area located along the southern edge of the driveway, approximately 115' southeast of West Street, where the driveway splits into two. This wetland is approximately 150 square feet in size and is covered under the Northborough Wetland bylaw and Regulations. This area is delineated by flag series IW-A to IW-E. Wetland vegetation in this area is comprised mainly of; buttonbush, soft rush, tussock sedge, woolgrass and goldenrod.

The attached Existing Hydrology Plan shows the project design point(s) and contributing drainage areas with existing land cover types. The analyzed design points are (DP-1) near the intersection of Cherry Street and West Street, and the 12" vertical standpipe in the pond (DP-2).

1207.03-SWM Report.docx - 3 -

PROPOSED PROJECT

The proposed work is considered a new development project. The applicant is proposing to build a common drive to subdivide the above-mentioned lots into six (6) lots with single-family dwellings constructed per Town of Northborough Development Standards. The project will utilize conventional stormwater management techniques including grass lined swales, deep sump catch basins, subsurface infiltration chambers, and a stormwater pond for the treatment and mitigation of stormwater. Clearing of the site will occur to accommodate the common driveway and associated infrastructure for the residential lots.

A stormwater management plan has been developed to meet the requirements of the Town of Northborough and the MassDEP Stormwater Standards. Runoff will flow overland via sheet flow or shallow concentrated flow towards grass swales along either side of the common drive. Water quality inlets will collect the flow from the grassed swale before the flow enters the subsurface infiltration and dry extended detention systems.

Soils mapped on-site by the NRCS are primarily Paxton fine sandy loam (map units 305C, 306B/C and 307D), Windsor loamy sand (255B), Chatfield-Holli-Rock outcrop complex (102C) and Woodbridge fine sandy loam (312B). Three of the five underground basins are within the Windsor loamy sand (255B) and the other two infiltration basins are in the Paxton fine sandy loam. The three underground basins with Windsor loamy sand are dry extended detention ponds due to poor infiltration rates. The proposed detention pond will not infiltrate stormwater due to the proximity of the 100-yr floodplain.

STORMWATER MANAGEMENT STANDARDS

STANDARD #1 - NO NEW UNTREATED DISCHARGES

The stormwater collection systems have been designed so that stormwater runoff from the asphalt paved areas is treated through a treatment train consisting of grass lined swales, deep-sump, hooded drop inlets, stormwater infiltration system and a detention basin. Additionally, all outlets have been designed so that there will be no erosion or scour to the wetlands of the Commonwealth.

STANDARD #2 - PEAK RATE ATTENUATION

METHODOLOGY

United States Soil Conservation Service, "Urban Hydrology for Small Watersheds, Technical Release Number 55 (TR-55) methods (HydroCAD 10.10-4b) were utilized to develop runoff hydrographs for watershed areas affected by the proposed development. Existing and proposed runoff hydrographs were developed for the 2, 10-, and 100-year, 24-hour rainfall events to develop a stormwater management system that will limit post-development peak runoff rates to pre-development levels.

The proposed stormwater management plan has been designed to meet the requirements of the Town of Northborough and the MassDEP Stormwater Management Standards. The project will limit peak rates of runoff from the site and will infiltrate runoff to approximate existing groundwater recharge.

1207.03-SWM Report.docx - 4 -

ANALYSIS SUMMARY

To assess the impact of the proposed development on peak runoff rates onto down-gradient properties, hydrologic calculations were performed for each of three (3) design storms at the two (2) design points. The calculations refer to runoff quantities at the final design points, Design Point 1 (DP-1) near the intersection of Cherry Street and West Street and the other, DP-2) is an existing pond adjacent to West Street. Stormwater runoff from the rooftops will be routed to infiltration chambers located on their respective lots.

Calculations of peak runoff rates for existing and proposed site conditions are summarized in Table I for comparison of peak runoff rates for the design point for the three design storm events. A proposed hydrology plan is provided showing the various sub-watersheds draining to the proposed stormwater management facilities. Stormwater runoff from the overland areas not tributary to the stormwater management facilities will drain by sheet flow or shallow concentrated flow along the existing flow patterns to the design points.

Table I demonstrates that the proposed stormwater management system will be effective in limiting peak rates of runoff from the subject property to approximate pre-development levels. Table II indicates the change in stormwater runoff volume. Table III and IV provide data on the existing and proposed ground cover areas.

TABLE I: EXISTING AND PROPOSED PEAK RUNOFF

DRAINAGE AREA	DESIGN STORM EVENT / PEAK RUNOFF (cfs)				
	2-Year	10-Year	100-Year		
Existing (DP-1)	2.5	7.7	18.0		
Proposed (DP-1)	1.3	5.9	18.0		
Existing (DP-2)	6.6	16.3	34.1		
Proposed (DP-2)	5.3	15.3	33.9		

TABLE II: EXISTING AND PROPOSED RUNOFF VOLUMES

DRAINAGE AREA	DESIGN STORM EVENT / VOLUME (cf)				
	2-Year	10-Year	100-Year		
Existing (DP-1)	16,513	43,029	95,956		
Proposed (DP-1)	6,813	30,953	85,108		
Existing (DP-2)	34,323	78,960	162,568		
Proposed (DP-2)	29,004	73,050	157,291		

1207.03-SWM Report.docx - 5 -

TABLE III: EXISTING GROUND COVER

EXISTING GROUND COVER	HYDROLOGIC SOIL GROUP (HSG)					
	HSG-A (sq-ft)	HSG-B (sq-ft)	HSG-C (sq-ft)	HSG-D (sq-ft)	Total (sq-ft)	
>75% Grass cover, Good	65,785	0	49420	11,365	126,570	
Paved Parking	10	0	7,674	2,340	10,025	
Roofs	0	0	2,657	0	2,657	
Water	0	0	11,813	5,791	17,604	
Woods, Good	0	25,377	550,292	21,760	597,430	
Total Area	65,795	25,377	621,856	41,257	754,285	

TABLE IV: PROPPOSED GROUND COVER

PROPOSED GROUND COVER	HYDROLOGIC SOIL GROUP (HSG)					
	HSG-A (sq-ft)	HSG-B (sq-ft)	HSG-C (sq-ft)	HSG-D (sq-ft)	Total (sq-ft)	
>75% Grass cover, Good	57,233	0	168,545	9,399	235,177	
Paved Parking	8,556	0	39,995	420	45,971	
Roofs	0	0	16,716	0	16,716	
Water	0	0	11,813	5,791	17,604	
Woods, Good	0	25,377	387,792	25648	438,817	
Total Area	65,789	25,377	621,861	41,258	754,285	

TABLE V: WATER SURFACE ELEVATIONS

STORMWATER FACILITY	100-YR STORM EVENT WATER ELEVATION (FT)	TOP/BERM ELEVATION	Existing Ground Elevations (ft)	Proposed Grade Elevations (ft)	Bottom of Stone/Invert (ft)	Redox Elevation (ft)	Provided Separation to SHGW (ft)	Observed Infiltration Rates
POND (1P)	320.7	322.0	321.0	320.0	N/A	N/A	N/A	N/A
INF-103	327.8	N/A	327.0	328.7	326.0	323.0	3.0	0.276
INF-104	328.6	N/A	325.0	329.6	325.1	323.0	2.1	3.072
INF -105	349.9	N/A	347.2	351.0	346.5	344.1	2.4	1.284
INF -106	357.9	N/A	355.0	359.0	351.3	349.2	2.1	1.758
INF -201	339.7	N/A	336.2	340.7	336.2	333.2	3.0	2.262

1207.03-SWM Report.docx - 6 -

STANDARD #3 - STORMWATER RECHARGE

Groundwater recharge is provided within the five (5) subsurface infiltration systems INF-103, -104, -105, -106, and -201. The test pits have been performed throughout the site and in areas where infiltration is proposed. The test pit data is provided in the appendix. Soil textures identified in the C horizon were Loam-Fine Sandy Loam for Pond (1P), Loamy Sand for INF-103, Medium Sand for INF-104, Fine Sandy Loam for INF-105 and 106, and Loamy Sand for INF-201. Double-ring infiltrometer tests were performed to determine infiltration rates for INF-103, -104. A hydraulic conductivity by Guelph permeameter test was performed to determine infiltration rates for INF-105, -106, and 201. Infiltration testing data is provided in the Appendix. The proposed detention pond will not infiltrate stormwater due to high ground water level. The Static Method was used in sizing the infiltration systems.

The table below provides a summary of the attached groundwater recharge calculations. Calculations are based on HSG A, C, and D. The required volume of groundwater recharge is equal to 1.0", 0.25" and 0.1" over the proposed impervious area for A, C, and D soils.

REQUIRED (CF)	PROVIDED (CF)
1,648	12,049

CAPTURE AREA ADJUSTMENT

Total Impervious Area = 80,291 sf Impervious Area Draining to Infiltration Facilities = 45,378 sf Ratio = 80,291 / 45,378 = 1.77 *Adjusted Required Infiltration Volume (Rv) = 1.77 x 1,648 cf = 2,916 cf

ADJUSTED REQUIRED (CF)	PROVIDED (CF)
2,916	12,049

DRAWDOWN CALCULATIONS

$$Time = \frac{Rv}{(K)(Bottom\ Area)}$$

Rv = Storage Volume (cubic feet)

K = Saturated Hydraulic Conductivity (inches per hour)

Drawdown times for all basins are shown in the Stormwater Standards Calculations section of the appendix.

STANDARD #4 - WATER QUALITY VOLUME

Water quality measures will be designed to provide a minimum of 80% Total Suspended Solids (TSS) removal, and to treat 0.5 of runoff prior to discharging to the bordering vegetated wetland. The water quality volume

1207.03-SWM Report.docx - 7 -

is achieved by providing a static storage volume below the outlet in the infiltration basin and within the subsurface infiltration facility.

REQUIRED (CF)	PROVIDED (CF)
2,325	12,049

Over 80% TSS removal will be provided through the use of the following two treatment trains: 1) grass lined swale 2) deep sump drop inlet, 3) subsurface infiltration systems, or 1) grass lined swale 2) deep sump drop inlet, 3) extended dry detention pond. Water quality calculations for all outfalls are shown in the Stormwater Standards Calculations section of the appendix.

STANDARD #5 – LAND USES WITH HIGHER POTENTIAL POLLUTANT LOADS (LUHPPLS)

The proposed project is not considered a land use with Higher Potential Pollutant Loads therefore, Standard #5 is not applicable.

STANDARD #6 - CRITICAL AREAS

The proposed project will not discharge near or to a Critical Area. Appropriate water quality and TSS removal Best Management Practices (BMPs) have been specified to satisfy Standard #6.

STANDARD #7 - REDEVELOPMENT PROJECT

The proposed project not considered a redevelopment project therefore, Standard #7 is not applicable.

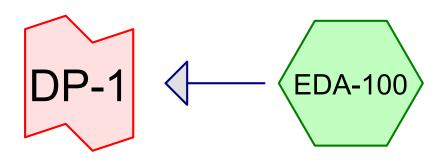
STANDARD #8 – CONSTRUCTION POLLUTION PREVENTION AND EROSION AND SEDIMENTATION CONTROL

As the total project area is over one acre, a Notice of Intent (NOI) must be filed with the US EPA and a Stormwater Pollution Prevention Plan (SWPPP) shall be retained on-site during construction. The attached draft project SWPPP has been developed in accordance with the current MA Construction General Permit (CGP). The draft SWPPP is included as part of this Stormwater Management Report for compliance with the Standards.

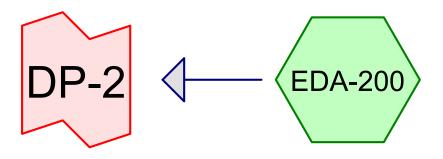
STANDARD #9 - OPERATION AND MAINTENANCE PLAN

The attached Operation and Maintenance Plan describes the requisite long-term operation and maintenance of all on-site stormwater Best Management Practices (BMPs) and hydraulic drainage system. The Operation and Maintenance Plan also describes source control for the prevention of pollution to also serve as the Long-Term Pollution Prevention Plan (LTPPP).

STANDARD #10 - PROHIBITION OF ILLICIT DISCHARGES


An Illicit Discharge Compliance Statement will be provided by the Owner/Applicant prior to the discharge of stormwater to post-construction BMPs.

1207.03-SWM Report.docx - 8 -


MASSACHUSETTS STORMWATER REPORT CHECKLIST (Attached)

1207.03-SWM Report.docx - 9 -

EXISTING HYDROLOGY

DESIGN POINT 1 EDA-100

DESIGN POINT 2 EDA-200

Table of Contents
Printed 5/3/2021

Prepared by WDA Design Group

HydroCAD® 10.10-5a s/n 11557 © 2020 HydroCAD Software Solutions LLC

TABLE OF CONTENTS

Project Reports

- 10 Routing Diagram
- 11 Rainfall Events Listing (selected events)
- 12 Area Listing (all nodes)
- 13 Soil Listing (all nodes)
- 14 Ground Covers (all nodes)

2-year Event

- 15 Node Listing
- 16 Subcat EDA-100: EDA-100
- 17 Subcat EDA-200: EDA-200
- 18 Link DP-1: DESIGN POINT 1
- 18 Link DP-2: DESIGN POINT 2

10-year Event

- 18 Node Listing
- 19 Subcat EDA-100: EDA-100
- 20 Subcat EDA-200: EDA-200
- 21 Link DP-1: DESIGN POINT 1
- 21 Link DP-2: DESIGN POINT 2

100-year Event

- 21 Node Listing
- 22 Subcat EDA-100: EDA-100
- 23 Subcat EDA-200: EDA-200
- 24 Link DP-1: DESIGN POINT 1
- 24 Link DP-2: DESIGN POINT 2

Printed 5/3/2021

Prepared by WDA Design Group
HydroCAD® 10.10-5a s/n 11557 © 2020 HydroCAD Software Solutions LLC

Page 11

Rainfall Events Listing (selected events)

	Event#	Event	Storm Type	Curve	Mode	Duration	B/B	Depth	AMC
_		Name				(hours)		(inches)	
	1	2-year	Type III 24-hr		Default	24.00	1	3.28	2
	2	10-year	Type III 24-hr		Default	24.00	1	5.02	2
	3	100-year	Type III 24-hr		Default	24.00	1	7.78	2

Prepared by WDA Design Group
HydroCAD® 10.10-5a s/n 11557 © 2020 HydroCAD Software Solutions LLC
Page 12

Area Listing (all nodes)

Area	CN	Description
(sq-ft)		(subcatchment-numbers)
65,785	39	>75% Grass cover, Good, HSG A (EDA-100)
49,420	74	>75% Grass cover, Good, HSG C (EDA-100, EDA-200)
11,365	80	>75% Grass cover, Good, HSG D (EDA-100, EDA-200)
10	98	Paved parking, HSG A (EDA-100)
7,674	98	Paved parking, HSG C (EDA-100, EDA-200)
2,340	98	Paved parking, HSG D (EDA-100, EDA-200)
2,657	98	Roofs, HSG C (EDA-100, EDA-200)
11,813	98	Water Surface, HSG C (EDA-200)
5,791	98	Water Surface, HSG D (EDA-200)
25,377	55	Woods, Good, HSG B (EDA-200)
550,292	70	Woods, Good, HSG C (EDA-100, EDA-200)
21,760	77	Woods, Good, HSG D (EDA-200)
754,285	69	TOTAL AREA

Printed 5/3/2021

Prepared by WDA Design Group
HydroCAD® 10.10-5a s/n 11557 © 2020 HydroCAD Software Solutions LLC

Page 13

Soil Listing (all nodes)

Area	Soil	Subcatchment
(sq-ft)	Group	Numbers
65,795	HSG A	EDA-100
25,377	HSG B	EDA-200
621,856	HSG C	EDA-100, EDA-200
41,257	HSG D	EDA-100, EDA-200
0	Other	
754,285		TOTAL AREA

Prepared by WDA Design Group
HydroCAD® 10.10-5a s/n 11557 © 2020 HydroCAD Software Solutions LLC
Page 14

Su Nυ

Ground Covers (all nodes)

HSG-A	HSG-B	HSG-C	HSG-D	Other	Total	Ground
(sq-ft)	(sq-ft)	(sq-ft)	(sq-ft)	(sq-ft)	(sq-ft)	Cover
65,785	0	49,420	11,365	0	126,570	>75% Grass
						cover, Good
10	0	7,674	2,340	0	10,025	Paved parking
0	0	2,657	0	0	2,657	Roofs
0	0	11,813	5,791	0	17,604	Water Surface
0	25,377	550,292	21,760	0	597,430	Woods, Good
65,795	25,377	621,856	41,257	0	754,285	TOTAL AREA

85 & 95 West Street - Existing Conditions

85 West Street Northborough JN-1207.03 - Existing 202Type III 24-hr 2-year Rainfall=3.28"

Prepared by WDA Design Group

Printed 5/3/2021

Page 15

HydroCAD® 10.10-5a s/n 11557 © 2020 HydroCAD Software Solutions LLC

Time span=0.00-96.00 hrs, dt=0.05 hrs, 1921 points
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN
Reach routing by Stor-Ind+Trans method - Pond routing by Stor-Ind method

SubcatchmentEDA-100: EDA-100 Runoff Area=309,776 sf 3.82% Impervious Runoff Depth=0.64"

Flow Length=1,237' Tc=27.7 min CN=65 Runoff=2.5 cfs 16,513 cf

SubcatchmentEDA-200: EDA-200 Runoff Area=444,509 sf 4.15% Impervious Runoff Depth=0.93"

Flow Length=985' Tc=21.7 min CN=71 Runoff=6.6 cfs 34,323 cf

Link DP-1: DESIGN POINT 1 Inflow=2.5 cfs 16,513 cf

Primary=2.5 cfs 16,513 cf

Link DP-2: DESIGN POINT 2 Inflow=6.6 cfs 34,323 cf

Primary=6.6 cfs 34,323 cf

Total Runoff Area = 754,285 sf Runoff Volume = 50,835 cf Average Runoff Depth = 0.81" 95.98% Pervious = 724,000 sf 4.02% Impervious = 30,285 sf

Page 16

HydroCAD® 10.10-5a s/n 11557 © 2020 HydroCAD Software Solutions LLC

Summary for Subcatchment EDA-100: EDA-100

Runoff = 2.5 cfs @ 12.47 hrs, Volume= 16,513 cf, Depth= 0.64"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-96.00 hrs, dt= 0.05 hrs Type III 24-hr 2-year Rainfall=3.28"

A	rea (sf)	CN E	escription					
	38,421	74 >	74 >75% Grass cover, Good, HSG C					
1	87,813	70 V	Voods, Go	od, HSG C				
	10	98 F	aved park	ing, HSG A	1			
	65,785	39 >	75% Gras	s cover, Go	ood, HSG A			
	2,362		Roofs, HSG					
	7,657		•	ing, HSG C				
	1,789			ing, HSG D				
	5,939	80 >75% Grass cover, Good, HSG D						
	09,776		Veighted A					
2	97,958		6.18% Per					
	11,818	3	.82% Impe	ervious Are	a			
_		01		o :	D			
Tc	Length	Slope	Velocity		Description			
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)				
14.2	50	0.0140	0.06		Sheet Flow,			
					Woods: Light underbrush n= 0.400 P2= 3.20"			
7.4	684	0.0940	1.53		Shallow Concentrated Flow,			
0.4	500		4.07		Woodland Kv= 5.0 fps			
6.1	503	0.0385	1.37		Shallow Concentrated Flow,			
					Short Grass Pasture Kv= 7.0 fps			
27.7	1,237	Total						

Total

Summary for Subcatchment EDA-200: EDA-200

Runoff = 6.6 cfs @ 12.34 hrs, Volume= 34,323 cf, Depth= 0.93"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-96.00 hrs, dt= 0.05 hrs Type III 24-hr 2-year Rainfall=3.28"

85 West Street Northborough JN-1207.03 - Existing 202 Type III 24-hr 2-year Rainfall=3.28"

Prepared by WDA Design Group

Printed 5/3/2021

Page 17

HydroCAD® 10.10-5a s/n 11557 © 2020 HydroCAD Software Solutions LLC

Α	rea (sf)	CN [Description		
	25,377	55 V	Voods, Go	od, HSG B	
3	62,479			od, HSG C	
	10,999	74 >	75% Gras	s cover, Go	ood, HSG C
	295	98 F	Roofs, HSC	S C	
	11,813	98 V	Vater Surfa	ace, HSG C	
	17	98 F	Paved park	ing, HSG C	
	5,791			ace, HSG D	
	551			ing, HSG D	
	21,760		,	od, HSG D	
	5,426	80 >	•75% Gras	s cover, Go	ood, HSG D
4	44,509	71 V	Veighted A	verage	
4	26,042	ç	5.85% Pei	rvious Area	
	18,467	4	.15% Impe	ervious Are	a
_					
Tc	Length	Slope	•		Description
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
10.9	50	0.0270	0.08		Sheet Flow,
					Woods: Light underbrush n= 0.400 P2= 3.20"
10.8	935	0.0826	1.44		Shallow Concentrated Flow,
					Woodland Kv= 5.0 fps
21.7	985	Total			

Summary for Link DP-1: DESIGN POINT 1

Inflow Area = 309,776 sf, 3.82% Impervious, Inflow Depth = 0.64" for 2-year event
Inflow = 2.5 cfs @ 12.47 hrs, Volume= 16,513 cf
Primary = 2.5 cfs @ 12.47 hrs, Volume= 16,513 cf, Atten= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-96.00 hrs, dt= 0.05 hrs

Summary for Link DP-2: DESIGN POINT 2

Inflow Area = 444,509 sf, 4.15% Impervious, Inflow Depth = 0.93" for 2-year event Inflow = 6.6 cfs @ 12.34 hrs, Volume= 34,323 cf
Primary = 6.6 cfs @ 12.34 hrs, Volume= 34,323 cf, Atten= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-96.00 hrs, dt= 0.05 hrs

85 & 95 West Street - Existing Conditions

85 West Street Northborough JN-1207.03 - Existing 20Type III 24-hr 10-year Rainfall=5.02"

Prepared by WDA Design Group

Printed 5/3/2021

Page 18

HydroCAD® 10.10-5a s/n 11557 © 2020 HydroCAD Software Solutions LLC

Time span=0.00-96.00 hrs, dt=0.05 hrs, 1921 points
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN
Reach routing by Stor-Ind+Trans method - Pond routing by Stor-Ind method

SubcatchmentEDA-100: EDA-100 Runoff Area=309,776 sf 3.82% Impervious Runoff Depth=1.67"

Flow Length=1,237' Tc=27.7 min CN=65 Runoff=7.7 cfs 43,029 cf

SubcatchmentEDA-200: EDA-200 Runoff Area=444,509 sf 4.15% Impervious Runoff Depth=2.13"

Flow Length=985' Tc=21.7 min CN=71 Runoff=16.3 cfs 78,960 cf

Link DP-1: DESIGN POINT 1 Inflow=7.7 cfs 43,029 cf

Primary=7.7 cfs 43,029 cf

Link DP-2: DESIGN POINT 2 Inflow=16.3 cfs 78,960 cf

Primary=16.3 cfs 78,960 cf

Total Runoff Area = 754,285 sf Runoff Volume = 121,990 cf Average Runoff Depth = 1.94" 95.98% Pervious = 724,000 sf 4.02% Impervious = 30,285 sf

Page 19

HydroCAD® 10.10-5a s/n 11557 © 2020 HydroCAD Software Solutions LLC

Summary for Subcatchment EDA-100: EDA-100

Runoff = 7.7 cfs @ 12.42 hrs, Volume= 43,029 cf, Depth= 1.67"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-96.00 hrs, dt= 0.05 hrs Type III 24-hr 10-year Rainfall=5.02"

A	rea (sf)	CN E	Description					
	38,421	74 >	74 >75% Grass cover, Good, HSG C					
1	87,813	70 V	Voods, Go	od, HSG C				
	10			ing, HSG A				
	65,785	39 >	·75% Gras	s cover, Go	ood, HSG A			
	2,362		Roofs, HSG					
	7,657		•	ing, HSG C				
	1,789			ing, HSG 🏻				
	5,939	80 >	80 >75% Grass cover, Good, HSG D					
3	09,776	65 Weighted Average						
2	97,958	_	6.18% Per					
	11,818	3	.82% Impe	ervious Are	a			
_		0.1			B			
	Length	Slope	Velocity		Description			
<u>(min)</u>	(feet)	(ft/ft)	(ft/sec)	(cfs)				
14.2	50	0.0140	0.06		Sheet Flow,			
					Woods: Light underbrush n= 0.400 P2= 3.20"			
7.4	684	0.0940	1.53		Shallow Concentrated Flow,			
					Woodland Kv= 5.0 fps			
6.1	503	0.0385	1.37		Shallow Concentrated Flow,			
					Short Grass Pasture Kv= 7.0 fps			
27.7	1,237	Total						

Summary for Subcatchment EDA-200: EDA-200

Runoff = 16.3 cfs @ 12.31 hrs, Volume= 78,960 cf, Depth= 2.13"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-96.00 hrs, dt= 0.05 hrs Type III 24-hr 10-year Rainfall=5.02"

85 West Street Northborough JN-1207.03 - Existing 20Type III 24-hr 10-year Rainfall=5.02"

Prepared by WDA Design Group

Printed 5/3/2021

Page 20

HydroCAD® 10.10-5a s/n 11557 © 2020 HydroCAD Software Solutions LLC

A	rea (sf)	CN E	escription		
	25,377	55 V	Voods, Go	od, HSG B	
3	62,479	70 V	Voods, Go	od, HSG C	
	10,999	74 >	75% Gras	s cover, Go	ood, HSG C
	295	98 F	Roofs, HSG	G C	
	11,813	98 V	Vater Surfa	ace, HSG C	
	17	98 F	aved park	ing, HSG C	
	5,791	98 V	Vater Surfa	ace, HSG D	
	551	98 F	Paved park	ing, HSG D	
	21,760	77 V	Voods, Go	od, HSG D	
	5,426	80 >	·75% Gras	s cover, Go	ood, HSG D
4	44,509	71 V	Veighted A	verage	
4	26,042	9	5.85% Per	rvious Area	
	18,467	4	.15% Impe	ervious Are	a
Tc	Length	Slope	Velocity		Description
<u>(min)</u>	(feet)	(ft/ft)	(ft/sec)	(cfs)	
10.9	50	0.0270	0.08		Sheet Flow,
					Woods: Light underbrush n= 0.400 P2= 3.20"
10.8	935	0.0826	1.44		Shallow Concentrated Flow,
					Woodland Kv= 5.0 fps
21.7	985	Total			

Summary for Link DP-1: DESIGN POINT 1

Inflow Area = 309,776 sf, 3.82% Impervious, Inflow Depth = 1.67" for 10-year event Inflow = 7.7 cfs @ 12.42 hrs, Volume= 43,029 cf Primary = 7.7 cfs @ 12.42 hrs, Volume= 43,029 cf, Atten= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-96.00 hrs, dt= 0.05 hrs

Summary for Link DP-2: DESIGN POINT 2

Inflow Area = 444,509 sf, 4.15% Impervious, Inflow Depth = 2.13" for 10-year event Inflow = 16.3 cfs @ 12.31 hrs, Volume= 78,960 cf
Primary = 16.3 cfs @ 12.31 hrs, Volume= 78,960 cf, Atten= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-96.00 hrs, dt= 0.05 hrs

85 & 95 West Street - Existing Conditions

85 West Street Northborough JN-1207.03 - Existing 2Type III 24-hr 100-year Rainfall=7.78"

Prepared by WDA Design Group

Printed 5/3/2021

HydroCAD® 10.10-5a s/n 11557 © 2020 HydroCAD Software Solutions LLC

Page 21

Time span=0.00-96.00 hrs, dt=0.05 hrs, 1921 points
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN
Reach routing by Stor-Ind+Trans method - Pond routing by Stor-Ind method

SubcatchmentEDA-100: EDA-100 Runoff Area=309,776 sf 3.82% Impervious Runoff Depth=3.72"

Flow Length=1,237' Tc=27.7 min CN=65 Runoff=18.0 cfs 95,956 cf

SubcatchmentEDA-200: EDA-200 Runoff Area=444,509 sf 4.15% Impervious Runoff Depth=4.39"

Flow Length=985' Tc=21.7 min CN=71 Runoff=34.1 cfs 162,568 cf

Link DP-1: DESIGN POINT 1 Inflow=18.0 cfs 95,956 cf

Primary=18.0 cfs 95,956 cf

Link DP-2: DESIGN POINT 2 Inflow=34.1 cfs 162,568 cf

Primary=34.1 cfs 162,568 cf

Total Runoff Area = 754,285 sf Runoff Volume = 258,524 cf Average Runoff Depth = 4.11" 95.98% Pervious = 724,000 sf 4.02% Impervious = 30,285 sf

Page 22

HydroCAD® 10.10-5a s/n 11557 © 2020 HydroCAD Software Solutions LLC

Summary for Subcatchment EDA-100: EDA-100

Runoff = 18.0 cfs @ 12.40 hrs, Volume= 95,956 cf, Depth= 3.72"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-96.00 hrs, dt= 0.05 hrs Type III 24-hr 100-year Rainfall=7.78"

A	rea (sf)	CN E	Description					
	38,421	74 >	74 >75% Grass cover, Good, HSG C					
1	87,813	70 V	Voods, Go	od, HSG C				
	10			ing, HSG A				
	65,785	39 >	·75% Gras	s cover, Go	ood, HSG A			
	2,362		Roofs, HSG					
	7,657		•	ing, HSG C				
	1,789			ing, HSG 🏻				
	5,939	80 >	80 >75% Grass cover, Good, HSG D					
3	09,776	65 Weighted Average						
2	97,958	_	6.18% Per					
	11,818	3	.82% Impe	ervious Are	a			
_		0.1			B			
	Length	Slope	Velocity		Description			
<u>(min)</u>	(feet)	(ft/ft)	(ft/sec)	(cfs)				
14.2	50	0.0140	0.06		Sheet Flow,			
					Woods: Light underbrush n= 0.400 P2= 3.20"			
7.4	684	0.0940	1.53		Shallow Concentrated Flow,			
					Woodland Kv= 5.0 fps			
6.1	503	0.0385	1.37		Shallow Concentrated Flow,			
					Short Grass Pasture Kv= 7.0 fps			
27.7	1,237	Total						

Summary for Subcatchment EDA-200: EDA-200

Runoff = 34.1 cfs @ 12.30 hrs, Volume= 162,568 cf, Depth= 4.39"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-96.00 hrs, dt= 0.05 hrs Type III 24-hr 100-year Rainfall=7.78"

85 West Street Northborough JN-1207.03 - Existing 2Type III 24-hr 100-year Rainfall=7.78"

Prepared by WDA Design Group

Printed 5/3/2021

Page 23

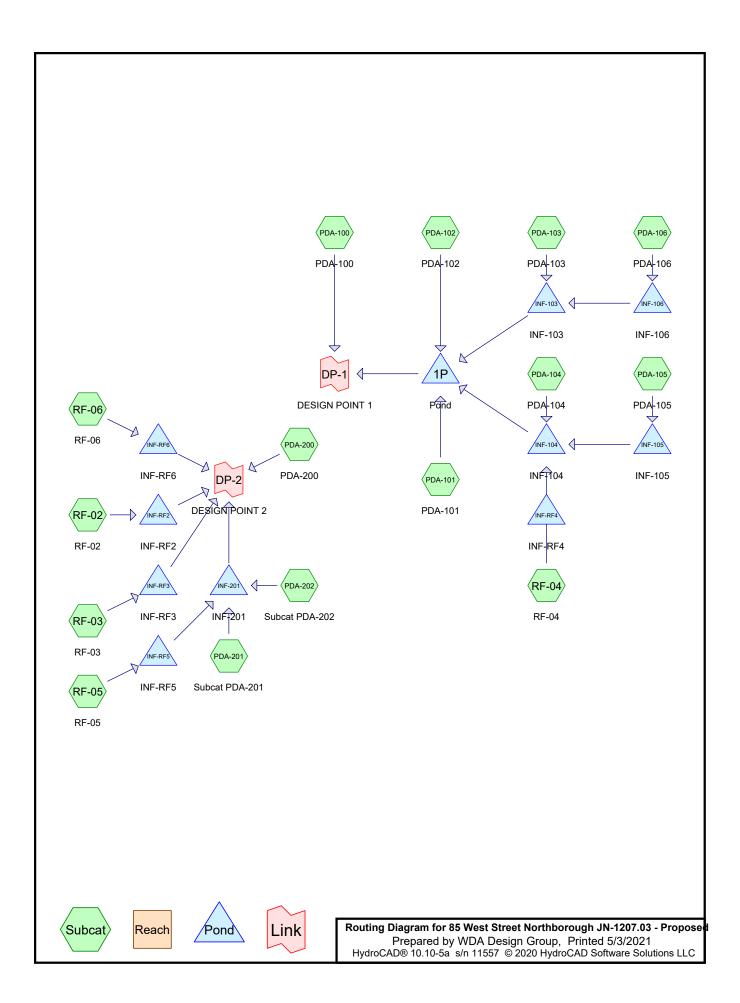
HydroCAD® 10.10-5a s/n 11557 © 2020 HydroCAD Software Solutions LLC

Ar	ea (sf)	CN [Description		
	25,377	55 \	Voods, Go	od, HSG B	
36	62,479	70 \	Voods, Go	od, HSG C	
•	10,999	74 >	75% Gras	s cover, Go	ood, HSG C
	295	98 F	Roofs, HSC	S C	
•	11,813	98 \	Vater Surfa	ace, HSG C	
	17	98 F	Paved park	ing, HSG C	
	5,791	98 \	Vater Surfa	ace, HSG D	
	551	98 F	Paved park	ing, HSG D	
	21,760	77 \	Voods, Go	od, HSG D	
	5,426	80 >	75% Gras	s cover, Go	ood, HSG D
44	44,509	71 \	Veighted A	verage	
42	26,042	Ç	95.85% Pei	rvious Area	
•	18,467	4	1.15% Impe	ervious Are	a
Тс	Length	Slope	Velocity	Capacity	Description
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
10.9	50	0.0270	0.08		Sheet Flow,
					Woods: Light underbrush n= 0.400 P2= 3.20"
10.8	935	0.0826	1.44		Shallow Concentrated Flow,
					Woodland Kv= 5.0 fps
21.7	985	Total			

Summary for Link DP-1: DESIGN POINT 1

Inflow Area = 309,776 sf, 3.82% Impervious, Inflow Depth = 3.72" for 100-year event Inflow = 18.0 cfs @ 12.40 hrs, Volume= 95,956 cf
Primary = 18.0 cfs @ 12.40 hrs, Volume= 95,956 cf, Atten= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-96.00 hrs, dt= 0.05 hrs


Summary for Link DP-2: DESIGN POINT 2

Inflow Area = 444,509 sf, 4.15% Impervious, Inflow Depth = 4.39" for 100-year event Inflow = 34.1 cfs @ 12.30 hrs, Volume= 162,568 cf
Primary = 34.1 cfs @ 12.30 hrs, Volume= 162,568 cf, Atten= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-96.00 hrs, dt= 0.05 hrs

Stormwater Management Report 85 & 95 West Street, Northborough, MA 01532 May 3. 2021

PROPOSED HYDROLOGY

Prepared by WDA Design Group

Table of Contents
Printed 5/3/2021

HydroCAD® 10.10-5a s/n 11557 © 2020 HydroCAD Software Solutions LLC

TABLE OF CONTENTS

Project Reports

- 25 Routing Diagram
- 26 Rainfall Events Listing (selected events)
- 27 Area Listing (all nodes)
- 28 Soil Listing (all nodes)
- 29 Ground Covers (all nodes)

2-year Event

- 30 Node Listing
- 32 Subcat PDA-100: PDA-100
- 33 Subcat PDA-101: PDA-101
- 33 Subcat PDA-102: PDA-102
- 34 Subcat PDA-103: PDA-103
- 35 Subcat PDA-104: PDA-104
- 35 Subcat PDA-105: PDA-105
- 36 Subcat PDA-106: PDA-106
- 36 Subcat PDA-200: PDA-200
- 37 Subcat PDA-201: Subcat PDA-201
- 38 Subcat PDA-202: Subcat PDA-202
- 38 Subcat RF-02: RF-02
- 39 Subcat RF-03: RF-03
- 39 Subcat RF-04: RF-04
- 39 Subcat RF-05: RF-05
- 39 Subcat RF-06: RF-06
- 40 Pond 1P: Pond
- 40 Pond INF-103: INF-103
- 41 Pond INF-104: INF-104
- 42 Pond INF-105: INF-105
- 43 Pond INF-106: INF-106
- 44 Pond INF-201: INF-201
- 44 Pond INF-RF2: INF-RF2
- 45 Pond INF-RF3: INF-RF3
- 46 Pond INF-RF4: INF-RF4
- 47 Pond INF-RF5: INF-RF5
- 47 Pond INF-RF6: INF-RF6
- 48 Link DP-1: DESIGN POINT 1
- 48 Link DP-2: DESIGN POINT 2

10-year Event

- 49 Node Listing
- 51 Subcat PDA-100: PDA-100
- 52 Subcat PDA-101: PDA-101
- 52 Subcat PDA-102: PDA-102
- 53 Subcat PDA-103: PDA-103
- 54 Subcat PDA-104: PDA-104

Prepared by WDA Design Group

Table of Contents
Printed 5/3/2021

HydroCAD® 10.10-5a s/n 11557 © 2020 HydroCAD Software Solutions LLC

- 54 Subcat PDA-105: PDA-105
- 55 Subcat PDA-106: PDA-106
- 55 Subcat PDA-200: PDA-200
- 56 Subcat PDA-201: Subcat PDA-201
- 57 Subcat PDA-202: Subcat PDA-202
- 57 Subcat RF-02: RF-02
- 58 Subcat RF-03: RF-03
- 58 Subcat RF-04: RF-04
- 58 Subcat RF-05: RF-05
- 58 Subcat RF-06: RF-06
- 59 Pond 1P: Pond
- 59 Pond INF-103: INF-103
- 60 Pond INF-104: INF-104
- 61 Pond INF-105: INF-105
- 62 Pond INF-106: INF-106
- 63 Pond INF-201: INF-201
- 63 Pond INF-RF2: INF-RF2
- 64 Pond INF-RF3: INF-RF3
- 65 Pond INF-RF4: INF-RF4
- 66 Pond INF-RF5: INF-RF5
- 66 Pond INF-RF6: INF-RF6
- 67 Link DP-1: DESIGN POINT 1
- 67 Link DP-2: DESIGN POINT 2

100-year Event

- 68 Node Listing
- 70 Subcat PDA-100: PDA-100
- 71 Subcat PDA-101: PDA-101
- 71 Subcat PDA-102: PDA-102
- 72 Subcat PDA-103: PDA-103
- 73 Subcat PDA-104: PDA-104
- 73 Subcat PDA-105: PDA-105
- 74 Subcat PDA-106: PDA-106
- 74 Subcat PDA-200: PDA-200
- 75 Subcat PDA-201: Subcat PDA-201
- 76 Subcat PDA-202: Subcat PDA-202
- 76 Subcat RF-02: RF-02
- 77 Subcat RF-03: RF-03
- 77 Subcat RF-04: RF-04
- 77 Subcat RF-05: RF-05
- 77 Subcat RF-06: RF-06
- 78 Pond 1P: Pond
- 78 Pond INF-103: INF-103
- 79 Pond INF-104: INF-104
- 80 Pond INF-105: INF-105
- 81 Pond INF-106: INF-106
- 82 Pond INF-201: INF-201

85 & 95 West Street - Proposed Conditions

85 West Street Northborough JN-1207.03 - Proposed

Table of Contents
Printed 5/3/2021

HydroCAD® 10.10-5a s/n 11557 © 2020 HydroCAD Software Solutions LLC

82 Pond INF-RF2: INF-RF2

Prepared by WDA Design Group

83 Pond INF-RF3: INF-RF3

84 Pond INF-RF4: INF-RF4

85 Pond INF-RF5: INF-RF5

85 Pond INF-RF6: INF-RF6

86 Link DP-1: DESIGN POINT 1

86 Link DP-2: DESIGN POINT 2

Printed 5/3/2021

Prepared by WDA Design Group
HydroCAD® 10.10-5a s/n 11557 © 2020 HydroCAD Software Solutions LLC

Page 26

Rainfall Events Listing (selected events)

Event#	Event	Storm Type	Curve	Mode	Duration	B/B	Depth	AMC
	Name				(hours)		(inches)	
1	2-year	Type III 24-hr		Default	24.00	1	3.28	2
2	10-year	Type III 24-hr		Default	24.00	1	5.02	2
3	100-year	Type III 24-hr		Default	24.00	1	7.78	2

Printed 5/3/2021

Prepared by WDA Design Group

HydroCAD® 10.10-5a s/n 11557 © 2020 HydroCAD Software Solutions LLC

Page 27

Area Listing (all nodes)

Area	CN	Description
(sq-ft)		(subcatchment-numbers)
57,233	39	>75% Grass cover, Good, HSG A (PDA-100, PDA-101, PDA-102, PDA-200)
168,545	74	>75% Grass cover, Good, HSG C (PDA-100, PDA-101, PDA-102, PDA-103,
		PDA-104, PDA-105, PDA-106, PDA-200, PDA-201, PDA-202)
9,399	80	>75% Grass cover, Good, HSG D (PDA-102, PDA-200)
8,556	98	Paved parking, HSG A (PDA-100, PDA-101, PDA-102, PDA-200)
36,995	98	Paved parking, HSG C (PDA-101, PDA-102, PDA-103, PDA-104, PDA-105,
		PDA-106, PDA-200, PDA-201, PDA-202)
420	98	Paved parking, HSG D (PDA-100, PDA-102, PDA-200)
16,716	98	Roofs, HSG C (PDA-102, PDA-200, RF-02, RF-03, RF-04, RF-05, RF-06)
11,813	98	Water Surface, HSG C (PDA-200)
5,791	98	Water Surface, HSG D (PDA-200)
25,377	55	Woods, Good, HSG B (PDA-200)
387,792	70	Woods, Good, HSG C (PDA-100, PDA-102, PDA-104, PDA-105, PDA-106,
		PDA-200, PDA-201, PDA-202)
25,648	77	Woods, Good, HSG D (PDA-200)
754,285	71	TOTAL AREA

Printed 5/3/2021

Prepared by WDA Design Group

HydroCAD® 10.10-5a s/n 11557 © 2020 HydroCAD Software Solutions LLC

Page 28

Soil Listing (all nodes)

Area	Soil	Subcatchment
(sq-ft)	Group	Numbers
65,789	HSG A	PDA-100, PDA-101, PDA-102, PDA-200
25,377	HSG B	PDA-200
621,861	HSG C	PDA-100, PDA-101, PDA-102, PDA-103, PDA-104, PDA-105, PDA-106,
		PDA-200, PDA-201, PDA-202, RF-02, RF-03, RF-04, RF-05, RF-06
41,258	HSG D	PDA-100, PDA-102, PDA-200
0	Other	
754,285		TOTAL AREA

85 West Street Northborough JN-1207.03 - Proposed

Printed 5/3/2021

Prepared by WDA Design Group
HydroCAD® 10.10-5a s/n 11557 © 2020 HydroCAD Software Solutions LLC

Page 29

Ground Covers (all nodes)

HSG-A	HSG-B	HSG-C	HSG-D	Other	Total	Ground
(sq-ft)	(sq-ft)	(sq-ft)	(sq-ft)	(sq-ft)	(sq-ft)	Cover
57,233	0	168,545	9,399	0	235,177	>75% Grass
						cover, Good
8,556	0	36,995	420	0	45,971	Paved parking
0	0	16,716	0	0	16,716	Roofs
0	0	11,813	5,791	0	17,604	Water Surface
0	25,377	387,792	25,648	0	438,817	Woods, Good
65,789	25,377	621,861	41,258	0	754,285	TOTAL AREA

Su Nυ

Outflow=1.3 cfs 6,617 cf

HydroCAD® 10.10-5a s/n 11557 © 2020 HydroCAD Software Solutions LLC

Page 30

Time span=0.00-96.00 hrs, dt=0.01 hrs, 9601 points x 2
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN
Reach routing by Dyn-Stor-Ind method - Pond routing by Dyn-Stor-Ind method

SubcatchmentPDA-100: PDA-100	Runoff Area=44,067 sf 6.77% Impervious Runoff Depth=0.05" Flow Length=263' Tc=15.1 min CN=45 Runoff=0.0 cfs 196 cf
SubcatchmentPDA-101: PDA-101	Runoff Area=8,231 sf 34.50% Impervious Runoff Depth=0.44" Flow Length=178' Tc=6.0 min CN=60 Runoff=0.1 cfs 302 cf
SubcatchmentPDA-102: PDA-102	Runoff Area=64,057 sf 11.83% Impervious Runoff Depth=0.88" Flow Length=618' Tc=15.8 min CN=70 Runoff=1.0 cfs 4,671 cf
SubcatchmentPDA-103: PDA-103	Runoff Area=7,866 sf 52.29% Impervious Runoff Depth=1.99" Flow Length=356' Tc=6.0 min CN=87 Runoff=0.4 cfs 1,302 cf
SubcatchmentPDA-104: PDA-104	Runoff Area=60,851 sf 4.61% Impervious Runoff Depth=1.03" Flow Length=889' Tc=17.5 min CN=73 Runoff=1.1 cfs 5,245 cf
SubcatchmentPDA-105: PDA-105	Runoff Area=92,080 sf 9.15% Impervious Runoff Depth=1.03" Flow Length=797' Tc=21.7 min CN=73 Runoff=1.6 cfs 7,937 cf
SubcatchmentPDA-106: PDA-106 Flow Length=48	Runoff Area=22,980 sf 57.09% Impervious Runoff Depth=2.07" 39' Slope=0.0460 '/' Tc=7.2 min CN=88 Runoff=1.2 cfs 3,962 cf
SubcatchmentPDA-200: PDA-200	Runoff Area=313,513 sf 6.86% Impervious Runoff Depth=0.98" Flow Length=966' Tc=20.0 min CN=72 Runoff=5.1 cfs 25,595 cf
SubcatchmentPDA-201: Subcat PDA-201	Runoff Area=15,861 sf 17.40% Impervious Runoff Depth=1.33" Flow Length=228' Tc=6.0 min CN=78 Runoff=0.6 cfs 1,761 cf
SubcatchmentPDA-202: Subcat PDA-202	Runoff Area=110,630 sf 0.01% Impervious Runoff Depth=0.93" Flow Length=830' Tc=22.6 min CN=71 Runoff=1.6 cfs 8,542 cf
SubcatchmentRF-02: RF-02	Runoff Area=3,116 sf 100.00% Impervious Runoff Depth=3.05" Tc=0.0 min CN=98 Runoff=0.3 cfs 791 cf
SubcatchmentRF-03: RF-03	Runoff Area=1,685 sf 100.00% Impervious Runoff Depth=3.05" Tc=0.0 min CN=98 Runoff=0.2 cfs 428 cf
SubcatchmentRF-04: RF-04	Runoff Area=3,116 sf 100.00% Impervious Runoff Depth=3.05" Tc=0.0 min CN=98 Runoff=0.3 cfs 791 cf
SubcatchmentRF-05: RF-05	Runoff Area=3,116 sf 100.00% Impervious Runoff Depth=3.05" Tc=0.0 min CN=98 Runoff=0.3 cfs 791 cf
SubcatchmentRF-06: RF-06	Runoff Area=3,116 sf 100.00% Impervious Runoff Depth=3.05" Tc=0.0 min CN=98 Runoff=0.3 cfs 791 cf
Pond 1P: Pond	Peak Elev=320.14' Storage=44 cf Inflow=1.3 cfs 6,617 cf

Primary=1.3 cfs 6,813 cf

Inflow=5.3 cfs 29,004 cf Primary=5.3 cfs 29,004 cf

85 West Street Northborough JN-1207.03 - Proposed Type III 24-hr 2-year Rainfall=3.28"

Prepared by WDA Design Group

Printed 5/3/2021

HydroCAD® 10.10-5a s/n 11557 © 2020 HydroCAD Software Solutions LLC Page 31

Pond INF-103: INF-103 Peak Elev=326.75' Storage=180 cf Inflow=0.4 cfs 1,503 cf Discarded=0.0 cfs 292 cf Primary=0.4 cfs 1,211 cf Outflow=0.4 cfs 1,503 cf Pond INF-104: INF-104 Peak Elev=326.79' Storage=2,155 cf Inflow=1.2 cfs 6,036 cf Discarded=0.1 cfs 5,604 cf Primary=0.1 cfs 433 cf Outflow=0.2 cfs 6,036 cf Peak Elev=348.05' Storage=4,128 cf Inflow=1.6 cfs 7,937 cf Pond INF-105: INF-105 Discarded=0.1 cfs 7,937 cf Primary=0.0 cfs 0 cf Outflow=0.1 cfs 7,937 cf Pond INF-106: INF-106 Peak Elev=355.62' Storage=2,343 cf Inflow=1.2 cfs 3,962 cf Discarded=0.0 cfs 3,761 cf Primary=0.0 cfs 201 cf Outflow=0.1 cfs 3,962 cf Pond INF-201: INF-201 Peak Elev=337.80' Storage=3,507 cf Inflow=1.9 cfs 10,664 cf Discarded=0.2 cfs 8,070 cf Primary=0.6 cfs 2,593 cf Outflow=0.7 cfs 10,664 cf Pond INF-RF2: INF-RF2 Peak Elev=335.70' Storage=116 cf Inflow=0.3 cfs 791 cf Discarded=0.0 cfs 431 cf Primary=0.3 cfs 360 cf Outflow=0.3 cfs 791 cf Pond INF-RF3: INF-RF3 Peak Elev=333.57' Storage=106 cf Inflow=0.2 cfs 428 cf Discarded=0.0 cfs 333 cf Primary=0.1 cfs 95 cf Outflow=0.1 cfs 428 cf Pond INF-RF4: INF-RF4 Peak Elev=0.00' Storage=0 cf Discarded=0.0 cfs 0 cf Primary=0.0 cfs 0 cf Pond INF-RF5: INF-RF5 Peak Elev=377.70' Storage=116 cf Inflow=0.3 cfs 791 cf Discarded=0.0 cfs 431 cf Primary=0.3 cfs 360 cf Outflow=0.3 cfs 791 cf Peak Elev=377.70' Storage=116 cf Inflow=0.3 cfs 791 cf Pond INF-RF6: INF-RF6 Discarded=0.0 cfs 431 cf Primary=0.3 cfs 360 cf Outflow=0.3 cfs 791 cf Inflow=1.3 cfs 6,813 cf Link DP-1: DESIGN POINT 1

Link DP-2: DESIGN POINT 2

Total Runoff Area = 754,285 sf Runoff Volume = 63,105 cf Average Runoff Depth = 1.00" 89.36% Pervious = 673,994 sf 10.64% Impervious = 80,291 sf HydroCAD® 10.10-5a s/n 11557 © 2020 HydroCAD Software Solutions LLC

Page 32

Summary for Subcatchment PDA-100: PDA-100

0.0 cfs @ 15.32 hrs, Volume= 196 cf, Depth= 0.05" Runoff

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-96.00 hrs, dt= 0.01 hrs Type III 24-hr 2-year Rainfall=3.28"

A	rea (sf)	CN E	escription		
	2,894	98 F	aved park	ing, HSG A	1
	37,895	39 >	75% Gras	s cover, Go	ood, HSG A
	395	70 V	Voods, Go	od, HSG C	
	2,795	74 >	75% Gras	s cover, Go	ood, HSG C
	88	98 F	Paved park	ing, HSG D)
	44,067	45 V	Veighted A	verage	
	41,085	9	3.23% Pei	rvious Area	
	2,982	6	.77% Impe	ervious Are	a
Tc	Length	Slope	Velocity	Capacity	Description
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
11.2	50	0.0256	0.07		Sheet Flow,
					Woods: Light underbrush n= 0.400 P2= 3.20"
3.9	213	0.0170	0.91		Shallow Concentrated Flow,
					Short Grass Pasture Kv= 7.0 fps
15.1	263	Total			

Summary for Subcatchment PDA-101: PDA-101

Runoff 0.1 cfs @ 12.12 hrs, Volume= 302 cf, Depth= 0.44"

	Α	rea (sf)	CN	Description							
		5,156	39	9 >75% Grass cover, Good, HSG A							
		2,334	98	Paved park	ing, HSG A	1					
		235	74	>75% Ġras	s cover, Go	ood, HSG C					
		506	98	Paved park	ing, HSG C						
		8,231	60	Weighted A	verage						
		5,391	(65.50% Pei	vious Area						
		2,840	,	34.50% Imp	ervious Ar	ea					
	То	Longth	Clana	Valacity	Consoity	Description					
	Tc	Length	Slope	•	Capacity	Description					
_	(min)	(feet)	(ft/ft)		(cfs)						
	0.4	50	0.0900	2.19		Sheet Flow,					
						Smooth surfaces n= 0.011 P2= 3.20"					
	0.4	128	0.1076	5.28		Shallow Concentrated Flow,					
_						Unpaved Kv= 16.1 fps					
	0.8	178	Total.	Increased t	o minimum	Tc = 6.0 min					

Prepared by WDA Design Group

Printed 5/3/2021

HydroCAD® 10.10-5a s/n 11557 © 2020 HydroCAD Software Solutions LLC

Page 33

Summary for Subcatchment PDA-102: PDA-102

Runoff 1.0 cfs @ 12.24 hrs, Volume= 4,671 cf, Depth= 0.88"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-96.00 hrs, dt= 0.01 hrs Type III 24-hr 2-year Rainfall=3.28"

A	rea (sf)	CN E	escription		
	11,117	39 >	75% Gras	s cover, Go	ood, HSG A
	3,051	98 F	aved park	ing, HSG A	\
	19,777	70 V	Voods, Go	od, HSG C	
	25,414	74 >	75% Gras	s cover, Go	ood, HSG C
	2,188	98 F	aved park	ing, HSG C	
	2,272	98 F	Roofs, HSG	S C	
	173	80 >	75% Gras	s cover, Go	ood, HSG D
	66	98 F	Paved park	ing, HSG [)
	64,057	70 V	Veighted A	verage	
	56,481	8	8.17% Per	vious Area	l
	7,576	1	1.83% Imp	pervious Ar	ea
Tc	Length	Slope	Velocity		Description
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
3.1	50	0.0908	0.27		Sheet Flow,
					Grass: Short n= 0.150 P2= 3.20"
8.5	360	0.0200	0.71		Shallow Concentrated Flow,
					Woodland Kv= 5.0 fps
4.2	208	0.0240	0.82	4.10	•
					Bot.W=2.00' D=1.00' Z= 3.0 '/' Top.W=8.00'
					n= 0.200
15.8	618	Total			

Summary for Subcatchment PDA-103: PDA-103

Runoff 0.4 cfs @ 12.09 hrs, Volume= 1,302 cf, Depth= 1.99"

 Area (sf)	CN	Description				
3,753	74	>75% Grass cover, Good, HSG C				
4,113	98	Paved parking, HSG C				
 0	70	Woods, Good, HSG C				
7,866	87	Weighted Average				
3,753		47.71% Pervious Area				
4,113		52.29% Impervious Area				

85 West Street Northborough JN-1207.03 - Proposed Type III 24-hr 2-year Rainfall=3.28"

Prepared by WDA Design Group

Printed 5/3/2021

HydroCAD® 10.10-5a s/n 11557 © 2020 HydroCAD Software Solutions LLC

Page 34

	Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
	0.3	36	0.0611	1.75		Sheet Flow,
						Smooth surfaces n= 0.011 P2= 3.20"
	0.4	188	0.0189	8.17	14.44	Pipe Channel,
						18.0" Round Area= 1.8 sf Perim= 4.7' r= 0.38'
						n= 0.013
	0.2	132	0.0902	10.59	52.95	Trap/Vee/Rect Channel Flow,
						Bot.W=2.00' D=1.00' Z= 3.0 '/' Top.W=8.00'
_						n= 0.030 Short grass
	0.9	356	Total I	ncreased t	o minimum	Tc = 6.0 min

356 Total, Increased to minimum Tc = 6.0 min

Summary for Subcatchment PDA-104: PDA-104

1.1 cfs @ 12.27 hrs, Volume= 5,245 cf, Depth= 1.03" Runoff

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-96.00 hrs, dt= 0.01 hrs Type III 24-hr 2-year Rainfall=3.28"

	Α	rea (sf)	CN E	Description						
		19,407	74 >	74 >75% Grass cover, Good, HSG C						
		38,640	70 V	Voods, Go	od, HSG C					
		2,804	98 F	Paved park	ing, HSG C					
		60,851	73 V	Veighted A	verage					
		58,047	9	5.39% Pei	rvious Area					
		2,804	4	.61% Impe	ervious Are	a				
	Tc	Length	Slope	•	Capacity	Description				
_	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)					
	10.2	50	0.0324	0.08		Sheet Flow,				
						Woods: Light underbrush n= 0.400 P2= 3.20"				
	4.3	335	0.0689	1.31		Shallow Concentrated Flow,				
						Woodland Kv= 5.0 fps				
	1.1	151	0.1167	2.39		Shallow Concentrated Flow,				
	4.0	404	0.0700	4.05		Short Grass Pasture Kv= 7.0 fps				
	1.6	131	0.0730	1.35		Shallow Concentrated Flow,				
	0.0	000	0.4000	44.40	2.00	Woodland Kv= 5.0 fps				
	0.3	222	0.1039	11.16	3.90	•				
						8.0" Round Area= 0.3 sf Perim= 2.1' r= 0.17' n= 0.013				
_						11- 0.013				
	17.5	889	Total							

Summary for Subcatchment PDA-105: PDA-105

1.6 cfs @ 12.32 hrs, Volume= 7,937 cf, Depth= 1.03" Runoff

85 West Street Northborough JN-1207.03 - Proposed Type III 24-hr 2-year Rainfall=3.28"

Prepared by WDA Design Group Printed 5/3/2021

HydroCAD® 10.10-5a s/n 11557 © 2020 HydroCAD Software Solutions LLC Page 35

	rea (sf)	CN D	escription		
	65,985	70 V	Voods, Go	od, HSG C	
	8,422	98 P	aved park	ing, HSG C	
	17,673	74 >	75% Ġras	s cover, Go	ood, HSG C
	92,080	73 V	Veighted A	verage	
	83,658			vious Area	
	8,422	9	.15% Impe	ervious Are	a
	•		•		
Tc	Length	Slope	Velocity	Capacity	Description
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	·
13.0	50	0.0176	0.06		Sheet Flow,
					Woods: Light underbrush n= 0.400 P2= 3.20"
5.0	347	0.0528	1.15		Shallow Concentrated Flow,
					Woodland Kv= 5.0 fps
0.1	30	0.3300	4.02		Shallow Concentrated Flow,
					Short Grass Pasture Kv= 7.0 fps
0.8	208	0.0684	4.21		Shallow Concentrated Flow,
					Unpaved Kv= 16.1 fps
2.8	162	0.0333	0.97	4.83	Trap/Vee/Rect Channel Flow,
					Bot.W=2.00' D=1.00' Z= 3.0 '/' Top.W=8.00'
					n= 0.200
21.7	797	Total			

Summary for Subcatchment PDA-106: PDA-106

Runoff = 1.2 cfs @ 12.10 hrs, Volume= 3,962 cf, Depth= 2.07"

A	rea (sf)	CN [Description				
	9,097	74 >	75% Gras	s cover, Go	ood, HSG C		
	13,120	98 F	Paved park	ing, HSG C			
	763	70 V	Voods, Go	od, HSG C			
	22,980	88 V	Weighted Average				
	9,860	4	42.91% Pervious Area				
	13,120	5	57.09% lmp	pervious Ar	ea		
Tc	Length	Slope	Velocity	Capacity	Description		
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)			
7.2	489	0.0460	1.13	5.67	Trap/Vee/Rect Channel Flow,		
					Bot.W=2.00' D=1.00' Z= 3.0 '/' Top.W=8.00'		
					n= 0.200		

HydroCAD® 10.10-5a s/n 11557 © 2020 HydroCAD Software Solutions LLC

Page 36

Summary for Subcatchment PDA-200: PDA-200

Runoff 5.1 cfs @ 12.30 hrs, Volume= 25,595 cf, Depth= 0.98"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-96.00 hrs, dt= 0.01 hrs Type III 24-hr 2-year Rainfall=3.28"

A	rea (sf)	CN D	escription						
	25,377	55 V							
	36,942	74 >	75% Gras	s cover, Go	ood, HSG C				
1	91,740	70 V	Voods, Go	od, HSG C					
	3,065				ood, HSG A				
	295		Roofs, HSG						
	3,073			ing, HSG C					
	277			ing, HSG A					
	266			ing, HSG D					
	11,813			ace, HSG C					
	5,791			ace, HSG D					
	25,648			od, HSG D	- 1 1100 B				
	9,226				ood, HSG D				
	13,513		Veighted A						
	91,998	_	-	vious Area					
	21,515	6	.86% impe	ervious Area	a				
Tc	Length	Slope	Velocity	Capacity	Description				
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	Becompach				
10.5	50	0.0296	0.08	()	Sheet Flow,				
10.0	00	0.0200	0.00		Woods: Light underbrush n= 0.400 P2= 3.20"				
3.4	247	0.0587	1.21		Shallow Concentrated Flow,				
					Woodland Kv= 5.0 fps				
2.6	248	0.0524	1.60		Shallow Concentrated Flow,				
					Short Grass Pasture Kv= 7.0 fps				
1.8	207	0.1498	1.94		Shallow Concentrated Flow,				
					Woodland Kv= 5.0 fps				
0.4	87	0.0274	3.36		Shallow Concentrated Flow,				
					Paved Kv= 20.3 fps				
0.1	16	0.3333	4.04		Shallow Concentrated Flow,				
4.5		0.000:	4 = 5		Short Grass Pasture Kv= 7.0 fps				
1.2	111	0.0901	1.50		Shallow Concentrated Flow,				
20.0	966	Total			Woodland Kv= 5.0 fps				

Summary for Subcatchment PDA-201: Subcat PDA-201

Runoff 0.6 cfs @ 12.09 hrs, Volume= 1,761 cf, Depth= 1.33"

85 West Street Northborough JN-1207.03 - Proposed Type III 24-hr 2-year Rainfall=3.28"

Prepared by WDA Design Group

Printed 5/3/2021

HydroCAD® 10.10-5a s/n 11557 © 2020 HydroCAD Software Solutions LLC

Page 37

	Area (sf)	CN [Description		
	12,163	74 >	>75% Gras	s cover, Go	ood, HSG C
	938	70 \	Noods, Go	od, HSG C	
	2,760	98 F	Paved park	ing, HSG C	
	15,861	78 \	Neighted A	verage	
	13,101	3	32.60% Pe	rvious Area	l
	2,760		17.40% lmp	pervious Ar	ea
Т	c Length	Slope	Velocity	Capacity	Description
(mir	n) (feet)	(ft/ft)	(ft/sec)	(cfs)	
0.	5 31	0.0200	1.09		Sheet Flow,
					Smooth surfaces n= 0.011 P2= 3.20"
0.	3 197	0.0609	13.05	65.26	Trap/Vee/Rect Channel Flow,
					Bot.W=2.00' D=1.00' Z= 3.0 '/' Top.W=8.00'
					n= 0.020
0.	8 228	Total.	Increased t	o minimum	Tc = 6.0 min

Summary for Subcatchment PDA-202: Subcat PDA-202

Runoff = 1.6 cfs @ 12.35 hrs, Volume= 8,54

8,542 cf, Depth= 0.93"

	Aı	rea (sf)	CN D	escription				
41,066 74 >75% Grass cover, Go			75% Gras	s cover, Go	ood, HSG C			
	10 98		98 F	Paved parking, HSG C				
		69,554	70 V	Woods, Good, HSG C				
	1	10,630	71 V	Weighted Average				
	1	10,620	9	9.99% Per	vious Area			
		10	0	.01% Impe	ervious Area	a		
	Tc	Length	Slope	Velocity	Capacity	Description		
_	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)			
	11.3	50	0.0250	0.07		Sheet Flow,		
						Woods: Light underbrush n= 0.400 P2= 3.20"		
	9.2	308	0.0500	0.56		Shallow Concentrated Flow,		
						Forest w/Heavy Litter Kv= 2.5 fps		
	1.7	169	0.0592	1.70		Shallow Concentrated Flow,		
						Short Grass Pasture Kv= 7.0 fps		
	0.4	303	0.0460	11.34	56.72	Trap/Vee/Rect Channel Flow,		
						Bot.W=2.00' D=1.00' Z= 3.0 '/' Top.W=8.00'		
_						n= 0.020		
	22.6	830	Total					

85 West Street Northborough JN-1207.03 - Proposed Type III 24-hr 2-year Rainfall=3.28"

Prepared by WDA Design Group

Printed 5/3/2021

HydroCAD® 10.10-5a s/n 11557 © 2020 HydroCAD Software Solutions LLC

Page 38

Summary for Subcatchment RF-02: RF-02

Runoff = 0.3 cfs @

0.3 cfs @ 12.00 hrs, Volume=

791 cf, Depth= 3.05"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-96.00 hrs, dt= 0.01 hrs Type III 24-hr 2-year Rainfall=3.28"

	Area (sf)	CN	Description
	3,116	98	Roofs, HSG C
3,116 100.00% Impervious Area			100.00% Impervious Area

Summary for Subcatchment RF-03: RF-03

Runoff =

0.2 cfs @ 12.00 hrs, Volume=

428 cf, Depth= 3.05"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-96.00 hrs, dt= 0.01 hrs Type III 24-hr 2-year Rainfall=3.28"

 Area (sf)	CN	Description
1,685	98	Roofs, HSG C
1,685		100.00% Impervious Area

Summary for Subcatchment RF-04: RF-04

Runoff

0.3 cfs @ 12.00 hrs, Volume=

791 cf, Depth= 3.05"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-96.00 hrs, dt= 0.01 hrs Type III 24-hr 2-year Rainfall=3.28"

 Area (sf)	CN	Description
3,116	98	Roofs, HSG C
 3.116		100.00% Impervious Area

Summary for Subcatchment RF-05: RF-05

Runoff =

0.3 cfs @ 12.00 hrs, Volume=

791 cf, Depth= 3.05"

 Area (sf)	CN	Description
3,116	98	Roofs, HSG C
3,116		100.00% Impervious Area

Prepared by WDA Design Group

Printed 5/3/2021

HydroCAD® 10.10-5a s/n 11557 © 2020 HydroCAD Software Solutions LLC

Page 39

Summary for Subcatchment RF-06: RF-06

Runoff = 0.3 cfs @ 12.00 hrs, Volume= 791 cf, Depth= 3.05"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-96.00 hrs, dt= 0.01 hrs Type III 24-hr 2-year Rainfall=3.28"

 Area (sf)	CN	Description
3,116	98	Roofs, HSG C
 3.116		100.00% Impervious Area

Summary for Pond 1P: Pond

Inflow Area = 259,181 sf, 16.20% Impervious, Inflow Depth = 0.31" for 2-year event
Inflow = 1.3 cfs @ 12.20 hrs, Volume= 6,617 cf
Outflow = 1.3 cfs @ 12.21 hrs, Volume= 6,617 cf, Atten= 0%, Lag= 0.6 min
Primary = 1.3 cfs @ 12.21 hrs, Volume= 6,617 cf

Routing by Dyn-Stor-Ind method, Time Span= 0.00-96.00 hrs, dt= 0.01 hrs / 2 Peak Elev= 320.14' @ 12.21 hrs Surf.Area= 350 sf Storage= 44 cf

Plug-Flow detention time= 1.2 min calculated for 6,617 cf (100% of inflow) Center-of-Mass det. time= 0.9 min (872.0 - 871.1)

Invest Avail Ctorage Ctorage Description

volume	Inv	<u>/ert Avall.S</u>	torage	Storage	Description		
#1	320.	00' 1,	,892 cf	Custom	Stage Data (Pi	rismatic)Listed below (Recalc)
Elevatio		Surf.Area (sq-ft)	Inc. (cubic	Store -feet)	Cum.Store (cubic-feet)		
320.0 321.0	-	269 841		0 555	0 555		
322.0	-	1,833		1,337	1,892		
Device	Routing	Inver	rt Outle	t Devices	S		
#1	Primary	320.20	L= 15 Inlet	Outlet Ir	P, projecting, no	headwall, Ke= 0.900 320.00' S= 0.0133'/	Cc= 0.900

n= 0.013, Flow Area= 0.35 sf

10.0' long x 8.0' breadth Broad-Crested Rectangular Weir
Head (feet) 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 1.80 2.00 2.50 3.00 3.50 4.00 4.50 5.00 5.50
Coef. (English) 2.43 2.54 2.70 2.69 2.68 2.68 2.66 2.64 2.64 2.64 2.65 2.65 2.66 2.66 2.68 2.70 2.74

Primary OutFlow Max=1.3 cfs @ 12.21 hrs HW=320.14' TW=0.00' (Dynamic Tailwater)

1=Culvert (Controls 0.0 cfs)

\/aluma

—2=Broad-Crested Rectangular Weir (Weir Controls 1.3 cfs @ 0.91 fps)

HydroCAD® 10.10-5a s/n 11557 © 2020 HydroCAD Software Solutions LLC

Page 40

Summary for Pond INF-103: INF-103

Inflow Area =	30,846 sf, 55.87% Impo	ervious, Inflow Depth = 0.	.58" for 2-year event
Inflow =	0.4 cfs @ 12.09 hrs, V	/olume= 1,503 cf	
Outflow =	0.4 cfs @ 12.11 hrs, V	/olume= 1,503 cf,	Atten= 4%, Lag= 1.4 min
Discarded =	0.0 cfs @ 9.24 hrs, V	/olume= 292 cf	_
Primary =	0.4 cfs @ 12.11 hrs, V	/olume= 1,211 cf	

Routing by Dyn-Stor-Ind method, Time Span= 0.00-96.00 hrs, dt= 0.01 hrs / 2 Peak Elev= 326.75' @ 12.11 hrs Surf.Area= 473 sf Storage= 180 cf

Plug-Flow detention time= 93.1 min calculated for 1,503 cf (100% of inflow) Center-of-Mass det. time= 93.2 min (924.2 - 831.0)

Volume	Invert	Avail.Storage	Storage Description
#1A	326.00'	310 cf	12.42'W x 38.07'L x 2.00'H Field A
			945 cf Overall - 171 cf Embedded = 774 cf x 40.0% Voids
#2A	326.50'	171 cf	ADS_StormTech SC-160LP +Capx 25 Inside #1
			Effective Size= 18.0"W x 12.0"H => 0.96 sf x 7.12'L = 6.8 cf
			Overall Size= 25.0"W x 12.0"H x 7.56'L with 0.44' Overlap
			25 Chambers in 5 Rows
		481 cf	Total Available Storage

Storage Group A created with Chamber Wizard

Device	Routing	Invert	Outlet Devices
#1	Primary	326.56'	6.0" Vert. Orifice/Grate X 4.00 C= 0.600
			Limited to weir flow at low heads
#2	Discarded	326.00'	0.276 in/hr Exfiltration - Loamy Sand over Surface area
			Phase-In= 0.01'

Discarded OutFlow Max=0.0 cfs @ 9.24 hrs HW=326.02' (Free Discharge) **2=Exfiltration - Loamy Sand** (Exfiltration Controls 0.0 cfs)

Primary OutFlow Max=0.4 cfs @ 12.11 hrs HW=326.75' TW=320.12' (Dynamic Tailwater) 1=Orifice/Grate (Orifice Controls 0.4 cfs @ 1.48 fps)

Summary for Pond INF-104: INF-104

Inflow Area =	156,047 sf, 9	9.19% Impervious,	Inflow Depth = 0.46"	for 2-year event
Inflow =	1.2 cfs @ 12	2.26 hrs, Volume=	6,036 cf	
Outflow =	0.2 cfs @ 13	3.09 hrs, Volume=	6,036 cf, Atte	n= 80%, Lag= 50.2 min
Discarded =	0.1 cfs @ 11	1.84 hrs, Volume=	5,604 cf	
Primary =	0.1 cfs @ 13	3.09 hrs, Volume=	433 cf	

Routing by Dyn-Stor-Ind method, Time Span= 0.00-96.00 hrs, dt= 0.01 hrs / 2 Peak Elev= 326.79' @ 13.09 hrs Surf.Area= 1,889 sf Storage= 2,155 cf

Plug-Flow detention time= 138.3 min calculated for 6,036 cf (100% of inflow) Center-of-Mass det. time= 138.3 min (996.4 - 858.2)

HydroCAD® 10.10-5a s/n 11557 © 2020 HydroCAD Software Solutions LLC

Page 41

Volume	Invert	Avail.Storage	Storage Description
#1A	325.10'	1,726 cf	25.25'W x 74.82'L x 3.50'H Field A
			6,612 cf Overall - 2,297 cf Embedded = 4,315 cf x 40.0% Voids
#2A	325.60'	2,297 cf	ADS_StormTech SC-740 +Capx 50 Inside #1
			Effective Size= 44.6"W x 30.0"H => 6.45 sf x 7.12'L = 45.9 cf
			Overall Size= 51.0"W x 30.0"H x 7.56'L with 0.44' Overlap
			50 Chambers in 5 Rows
		4 000 5	T () A ()) O (

4,023 cf Total Available Storage

Storage Group A created with Chamber Wizard

Device	Routing	Invert	Outlet Devices
#1	Primary	327.14'	6.0" Vert. Orifice/Grate X 2.00 C= 0.600
	•		Limited to weir flow at low heads
#2	Primary	326.81'	10.0" Vert. Orifice/Grate C= 0.600 Limited to weir flow at low heads
#3	Primary	326.64'	12.0" Vert. Orifice/Grate C= 0.600 Limited to weir flow at low heads
#4	Discarded	325.10'	3.072 in/hr Exfiltration - Loamy Sand over Surface area
			Phase-In= 0.01'

Discarded OutFlow Max=0.1 cfs @ 11.84 hrs HW=325.14' (Free Discharge) **4=Exfiltration - Loamy Sand** (Exfiltration Controls 0.1 cfs)

Primary OutFlow Max=0.1 cfs @ 13.09 hrs HW=326.79' TW=320.06' (Dynamic Tailwater)

-1=Orifice/Grate (Controls 0.0 cfs) -2=Orifice/Grate (Controls 0.0 cfs)

-3=Orifice/Grate (Orifice Controls 0.1 cfs @ 1.34 fps)

Summary for Pond INF-105: INF-105

Inflow Area =	92,080 sf, 9.15% Impervious,	Inflow Depth = 1.03" for 2-year event
Inflow =	1.6 cfs @ 12.32 hrs, Volume=	7,937 cf
Outflow =	0.1 cfs @ 11.95 hrs, Volume=	7,937 cf, Atten= 93%, Lag= 0.0 min
Discarded =	0.1 cfs @ 11.95 hrs, Volume=	7,937 cf
Primary =	0.0 cfs @ 0.00 hrs, Volume=	0 cf

Routing by Dyn-Stor-Ind method, Time Span= 0.00-96.00 hrs, dt= 0.01 hrs / 2 Peak Elev= 348.05' @ 16.17 hrs Surf.Area= 3,941 sf Storage= 4,128 cf

Plug-Flow detention time= 380.0 min calculated for 7,937 cf (100% of inflow) Center-of-Mass det. time= 380.0 min (1,258.3 - 878.3)

Volume	Invert	Avail.Storage	Storage Description
#1A	346.50'	3,532 cf	44.25'W x 89.06'L x 3.50'H Field A
			13,793 cf Overall - 4,962 cf Embedded = 8,831 cf x 40.0% Voids
#2A	347.00'	4,962 cf	ADS_StormTech SC-740 +Cap x 108 Inside #1
			Effective Size= 44.6"W x 30.0"H => 6.45 sf x 7.12'L = 45.9 cf
			Overall Size= 51.0"W x 30.0"H x 7.56'L with 0.44' Overlap
			108 Chambers in 9 Rows
	•	0.404 - f	Takal Assailahla Okanana

8,494 cf Total Available Storage

85 West Street Northborough JN-1207.03 - Proposed Type III 24-hr 2-year Rainfall=3.28"

Prepared by WDA Design Group

Printed 5/3/2021

HydroCAD® 10.10-5a s/n 11557 © 2020 HydroCAD Software Solutions LLC

Page 42

Storage Group A created with Chamber Wizard

Device	Routing	Invert	Outlet Devices
#1	Primary	348.54'	6.0" Vert. Orifice/Grate C= 0.600 Limited to weir flow at low heads
#2	Primary	348.38'	8.0" Vert. Orifice/Grate C= 0.600 Limited to weir flow at low heads
#3	Primary	348.21'	10.0" Vert. Orifice/Grate C= 0.600 Limited to weir flow at low heads
#4	Discarded	346.50'	1.284 in/hr Exfiltration - Sandy Loam over Surface area
			Phase-In= 0.01'

Discarded OutFlow Max=0.1 cfs @ 11.95 hrs HW=346.54' (Free Discharge) **4=Exfiltration - Sandy Loam** (Exfiltration Controls 0.1 cfs)

Primary OutFlow Max=0.0 cfs @ 0.00 hrs HW=346.50' TW=325.10' (Dynamic Tailwater)

1=Orifice/Grate (Controls 0.0 cfs)

-2=Orifice/Grate (Controls 0.0 cfs)

-3=Orifice/Grate (Controls 0.0 cfs)

Summary for Pond INF-106: INF-106

Inflow Area =	22,980 sf, 57.09% Impervious,	Inflow Depth = 2.07" for 2-year event
Inflow =	1.2 cfs @ 12.10 hrs, Volume=	3,962 cf
Outflow =	0.1 cfs @ 14.63 hrs, Volume=	3,962 cf, Atten= 95%, Lag= 151.4 min
Discarded =	0.0 cfs @ 10.74 hrs, Volume=	3,761 cf
Primary =	0.0 cfs @ 14.63 hrs, Volume=	201 cf

Routing by Dyn-Stor-Ind method, Time Span= 0.00-96.00 hrs, dt= 0.01 hrs / 2 Peak Elev= 355.62' @ 14.63 hrs Surf.Area= 786 sf Storage= 2,343 cf

Plug-Flow detention time= 671.0 min calculated for 3,962 cf (100% of inflow) Center-of-Mass det. time= 671.0 min (1,486.2 - 815.2)

Volume	Invert	Avail.Storage	Storage Description
#1A	351.25'	1,389 cf	28.50'W x 27.59'L x 6.75'H Field A
			5,308 cf Overall - 1,834 cf Embedded = 3,474 cf x 40.0% Voids
#2A	352.00'	1,834 cf	ADS_StormTech MC-4500 b +Capx 15 Inside #1
			Effective Size= 90.4"W x 60.0"H => 26.46 sf x 4.03'L = 106.5 cf
			Overall Size= 100.0"W x 60.0"H x 4.33'L with 0.31' Overlap
			15 Chambers in 3 Rows
			Cap Storage= +39.5 cf x 2 x 3 rows = 237.0 cf
		0.004.5	T () A () 1 0 (

3,224 cf Total Available Storage

Storage Group A created with Chamber Wizard

Device	Routing	Invert	Outlet Devices
#1	Primary	355.55'	6.0" Vert. Orifice/Grate X 2.00 C= 0.600
			Limited to weir flow at low heads
#2	Discarded	351.25'	1.758 in/hr Exfiltration - Sandy Loam over Surface area
			Phase-In= 0.01'

HydroCAD® 10.10-5a s/n 11557 © 2020 HydroCAD Software Solutions LLC

Page 43

Discarded OutFlow Max=0.0 cfs @ 10.74 hrs HW=351.32' (Free Discharge) **2=Exfiltration - Sandy Loam** (Exfiltration Controls 0.0 cfs)

Primary OutFlow Max=0.0 cfs @ 14.63 hrs HW=355.62' TW=326.63' (Dynamic Tailwater) 1=Orifice/Grate (Orifice Controls 0.0 cfs @ 0.93 fps)

Summary for Pond INF-201: INF-201

Inflow Area =	129,607 sf, 4.54% Impervious,	Inflow Depth = 0.99" for 2-year event
Inflow =	1.9 cfs @ 12.33 hrs, Volume=	10,664 cf
Outflow =	0.7 cfs @ 12.83 hrs, Volume=	10,664 cf, Atten= 61%, Lag= 30.2 min
Discarded =	0.2 cfs @ 11.84 hrs, Volume=	8,070 cf
Primary =	0.6 cfs @ 12.83 hrs, Volume=	2,593 cf

Routing by Dyn-Stor-Ind method, Time Span= 0.00-96.00 hrs, dt= 0.01 hrs / 2 Peak Elev= 337.80' @ 12.83 hrs Surf.Area= 3,236 sf Storage= 3,507 cf

Plug-Flow detention time= 147.5 min calculated for 10,663 cf (100% of inflow) Center-of-Mass det. time= 147.5 min (1,022.2 - 874.7)

Volume	Invert	Avail.Storage	Storage Description
#1A	336.20'	2,914 cf	39.50'W x 81.94'L x 3.50'H Field A
			11,328 cf Overall - 4,043 cf Embedded = 7,285 cf x 40.0% Voids
#2A	336.70'	4,043 cf	ADS_StormTech SC-740 +Cap x 88 Inside #1
			Effective Size= 44.6"W x 30.0"H => 6.45 sf x 7.12'L = 45.9 cf
			Overall Size= 51.0"W x 30.0"H x 7.56'L with 0.44' Overlap
			88 Chambers in 8 Rows
		6,957 cf	Total Available Storage

Storage Group A created with Chamber Wizard

Device	Routing	Invert	Outlet Devices
#1	Primary	337.45'	15.0" Vert. Orifice/Grate C= 0.600 Limited to weir flow at low heads
#2	Primary	338.24'	6.0" Vert. Orifice/Grate C= 0.600 Limited to weir flow at low heads
#3	Discarded	336.20'	2.262 in/hr Exfiltration - Sandy Loam over Surface area
			Phase-In= 0.01'

Discarded OutFlow Max=0.2 cfs @ 11.84 hrs HW=336.24' (Free Discharge) **3=Exfiltration - Sandy Loam** (Exfiltration Controls 0.2 cfs)

Primary OutFlow Max=0.6 cfs @ 12.83 hrs HW=337.80' TW=0.00' (Dynamic Tailwater)

1=Orifice/Grate (Orifice Controls 0.6 cfs @ 2.02 fps)

2=Orifice/Grate (Controls 0.0 cfs)

HydroCAD® 10.10-5a s/n 11557 © 2020 HydroCAD Software Solutions LLC

Page 44

Summary for Pond INF-RF2: INF-RF2

Inflow Area =	3,116 sf,100.00% Impervious,	Inflow Depth = 3.05" for 2-year event
Inflow =	0.3 cfs @ 12.00 hrs, Volume=	791 cf
Outflow =	0.3 cfs @ 12.01 hrs, Volume=	791 cf, Atten= 5%, Lag= 0.7 min
Discarded =	0.0 cfs @ 8.99 hrs, Volume=	431 cf
Primary =	0.3 cfs @ 12.01 hrs, Volume=	360 cf

Routing by Dyn-Stor-Ind method, Time Span= 0.00-96.00 hrs, dt= 0.01 hrs / 2 Peak Elev= 335.70' @ 12.01 hrs Surf.Area= 118 sf Storage= 116 cf

Plug-Flow detention time= 69.9 min calculated for 791 cf (100% of inflow) Center-of-Mass det. time= 69.9 min (820.2 - 750.3)

Volume	Invert	Avail.Storage	Storage Description
#1A	334.00'	129 cf	11.00'W x 10.74'L x 3.50'H Field A
			413 cf Overall - 92 cf Embedded = 321 cf x 40.0% Voids
#2A	334.50'	92 cf	ADS_StormTech SC-740 +Cap x 2 Inside #1
			Effective Size= 44.6"W x 30.0"H => 6.45 sf x 7.12'L = 45.9 cf
			Overall Size= 51.0"W x 30.0"H x 7.56'L with 0.44' Overlap
			2 Chambers in 2 Rows
		220 cf	Total Available Storage

Storage Group A created with Chamber Wizard

Device	Routing	Invert	Outlet Devices
#1	Discarded	334.00'	2.410 in/hr Exfiltration over Surface area Phase-In= 0.01'
#2	Primary	335.38'	8.0" Round Culvert
	•		L= 52.0' CMP, projecting, no headwall, Ke= 0.900
			Inlet / Outlet Invert= 335.38' / 333.00' S= 0.0458 '/' Cc= 0.900
			n= 0.013, Flow Area= 0.35 sf

Discarded OutFlow Max=0.0 cfs @ 8.99 hrs HW=334.04' (Free Discharge) **1=Exfiltration** (Exfiltration Controls 0.0 cfs)

Primary OutFlow Max=0.3 cfs @ 12.01 hrs HW=335.70' TW=0.00' (Dynamic Tailwater) 2=Culvert (Inlet Controls 0.3 cfs @ 1.53 fps)

Summary for Pond INF-RF3: INF-RF3

Inflow Area =	1,685 sf,100.00% Impervious,	Inflow Depth = 3.05" for 2-year event
Inflow =	0.2 cfs @ 12.00 hrs, Volume=	428 cf
Outflow =	0.1 cfs @ 12.06 hrs, Volume=	428 cf, Atten= 34%, Lag= 3.5 min
Discarded =	0.0 cfs @ 10.71 hrs, Volume=	333 cf
Primary =	0.1 cfs @ 12.06 hrs, Volume=	95 cf

Routing by Dyn-Stor-Ind method, Time Span= 0.00-96.00 hrs, dt= 0.01 hrs / 2 Peak Elev= 333.57' @ 12.06 hrs Surf.Area= 118 sf Storage= 106 cf

Plug-Flow detention time= 84.3 min calculated for 428 cf (100% of inflow)

85 West Street Northborough JN-1207.03 - Proposed Type III 24-hr 2-year Rainfall=3.28"

Prepared by WDA Design Group

Printed 5/3/2021

HydroCAD® 10.10-5a s/n 11557 © 2020 HydroCAD Software Solutions LLC

Page 45

Center-of-Mass det. time= 84.3 min (834.7 - 750.3)

Volume	Invert	Avail.Storage	Storage Description
#1A	332.00'	129 cf	11.00'W x 10.74'L x 3.50'H Field A
			413 cf Overall - 92 cf Embedded = 321 cf x 40.0% Voids
#2A	332.50'	92 cf	ADS_StormTech SC-740 +Capx 2 Inside #1
			Effective Size= 44.6"W x 30.0"H => 6.45 sf x 7.12'L = 45.9 cf
			Overall Size= 51.0"W x 30.0"H x 7.56'L with 0.44' Overlap
			2 Chambers in 2 Rows
		000 (T () A ())) O(

220 cf Total Available Storage

Storage Group A created with Chamber Wizard

Device	Routing	Invert	Outlet Devices
#1	Discarded	332.00'	2.410 in/hr Exfiltration over Surface area Phase-In= 0.01'
#2	Primary	333.38'	8.0" Round Culvert
	-		L= 57.0' CMP, projecting, no headwall, Ke= 0.900
			Inlet / Outlet Invert= 333.38' / 331.00' S= 0.0418 '/' Cc= 0.900
			n= 0.013, Flow Area= 0.35 sf

Discarded OutFlow Max=0.0 cfs @ 10.71 hrs HW=332.04' (Free Discharge) **1=Exfiltration** (Exfiltration Controls 0.0 cfs)

Primary OutFlow Max=0.1 cfs @ 12.06 hrs HW=333.57' TW=0.00' (Dynamic Tailwater) 2=Culvert (Inlet Controls 0.1 cfs @ 1.16 fps)

Summary for Pond INF-RF4: INF-RF4

Volume	Invert	Avail.Storage	Storage Description
#1A	366.00'	129 cf	11.00'W x 10.74'L x 3.50'H Field A
			413 cf Overall - 92 cf Embedded = 321 cf x 40.0% Voids
#2A	366.50'	92 cf	ADS_StormTech SC-740 +Cap x 2 Inside #1
			Effective Size= 44.6"W x 30.0"H => 6.45 sf x 7.12'L = 45.9 cf
			Overall Size= 51.0"W x 30.0"H x 7.56'L with 0.44' Overlap
			2 Chambers in 2 Rows
		220 of	Total Available Storage

220 cf Total Available Storage

Storage Group A created with Chamber Wizard

Device	Routing	Invert	Outlet Devices
#1	Discarded	366.00'	2.410 in/hr Exfiltration over Surface area Phase-In= 0.01'
#2	Primary	367.38'	8.0" Round Culvert
	-		L= 37.0' CMP, projecting, no headwall, Ke= 0.900
			Inlet / Outlet Invert= 367.38' / 366.00' S= 0.0373 '/' Cc= 0.900
			n= 0.013 Flow Area= 0.35 sf

85 West Street Northborough JN-1207.03 - Proposed Type III 24-hr 2-year Rainfall=3.28"

Prepared by WDA Design Group

Printed 5/3/2021

HydroCAD® 10.10-5a s/n 11557 © 2020 HydroCAD Software Solutions LLC

Page 46

Discarded OutFlow Max=0.0 cfs @ 0.00 hrs HW=0.00' (Free Discharge)

1=Exfiltration (Controls 0.0 cfs)

Primary OutFlow Max=0.0 cfs @ 0.00 hrs HW=0.00' (Free Discharge) 2=Culvert (Controls 0.0 cfs)

Summary for Pond INF-RF5: INF-RF5

Inflow Area =	3,116 sf,100.00% Impervious,	Inflow Depth = 3.05" for 2-year event
Inflow =	0.3 cfs @ 12.00 hrs, Volume=	791 cf
Outflow =	0.3 cfs @ 12.01 hrs, Volume=	791 cf, Atten= 5%, Lag= 0.7 min
Discarded =	0.0 cfs @ 8.99 hrs, Volume=	431 cf
Primary =	0.3 cfs @ 12.01 hrs, Volume=	360 cf

Routing by Dyn-Stor-Ind method, Time Span= 0.00-96.00 hrs, dt= 0.01 hrs / 2 Peak Elev= 377.70' @ 12.01 hrs Surf.Area= 118 sf Storage= 116 cf

Plug-Flow detention time= 69.9 min calculated for 791 cf (100% of inflow) Center-of-Mass det. time= 69.9 min (820.2 - 750.3)

<u>Volume</u>	Invert	Avail.Storage	Storage Description
#1A	376.00'	129 cf	11.00'W x 10.74'L x 3.50'H Field A
			413 cf Overall - 92 cf Embedded = 321 cf x 40.0% Voids
#2A	376.50'	92 cf	ADS_StormTech SC-740 +Cap x 2 Inside #1
			Effective Size= 44.6"W x 30.0"H => 6.45 sf x 7.12'L = 45.9 cf
			Overall Size= 51.0"W x 30.0"H x 7.56'L with 0.44' Overlap
			2 Chambers in 2 Rows
		220 cf	Total Available Storage

Storage Group A created with Chamber Wizard

Device	Routing	Invert	Outlet Devices
#1	Primary	377.38'	8.0" Round Culvert
	·		L= 16.0' CMP, projecting, no headwall, Ke= 0.900 Inlet / Outlet Invert= 377.38' / 376.00' S= 0.0862 '/' Cc= 0.900 n= 0.013, Flow Area= 0.35 sf
#2	Discarded	376.00'	2.410 in/hr Exfiltration over Surface area Phase-In= 0.01'

Discarded OutFlow Max=0.0 cfs @ 8.99 hrs HW=376.04' (Free Discharge) **2=Exfiltration** (Exfiltration Controls 0.0 cfs)

Primary OutFlow Max=0.3 cfs @ 12.01 hrs HW=377.70' TW=336.43' (Dynamic Tailwater) 1=Culvert (Inlet Controls 0.3 cfs @ 1.53 fps)

Printed 5/3/2021

HydroCAD® 10.10-5a s/n 11557 © 2020 HydroCAD Software Solutions LLC

Page 47

Summary for Pond INF-RF6: INF-RF6

Inflow Area =	3,116 sf,100.00% Impervious,	Inflow Depth = 3.05" for 2-year event
Inflow =	0.3 cfs @ 12.00 hrs, Volume=	791 cf
Outflow =	0.3 cfs @ 12.01 hrs, Volume=	791 cf, Atten= 5%, Lag= 0.7 min
Discarded =	0.0 cfs @ 8.99 hrs, Volume=	431 cf
Primary =	0.3 cfs @ 12.01 hrs, Volume=	360 cf

Routing by Dyn-Stor-Ind method, Time Span= 0.00-96.00 hrs, dt= 0.01 hrs / 2 Peak Elev= 377.70' @ 12.01 hrs Surf.Area= 118 sf Storage= 116 cf

Plug-Flow detention time= 69.9 min calculated for 791 cf (100% of inflow) Center-of-Mass det. time= 69.9 min (820.2 - 750.3)

Volume	Invert	Avail.Storage	Storage Description
#1A	376.00'	129 cf	11.00'W x 10.74'L x 3.50'H Field A
			413 cf Overall - 92 cf Embedded = 321 cf x 40.0% Voids
#2A	376.50'	92 cf	ADS_StormTech SC-740 +Cap x 2 Inside #1
			Effective Size= 44.6"W x 30.0"H => 6.45 sf x 7.12'L = 45.9 cf
			Overall Size= 51.0"W x 30.0"H x 7.56'L with 0.44' Overlap
			2 Chambers in 2 Rows
	•	220 cf	Total Available Storage

Storage Group A created with Chamber Wizard

Device	Routing	Invert	Outlet Devices
#1	Primary	377.38'	8.0" Round Culvert
	•		L= 58.0' CMP, projecting, no headwall, Ke= 0.900
			Inlet / Outlet Invert= 377.38' / 376.00' S= 0.0238 '/' Cc= 0.900
			n= 0.013, Flow Area= 0.35 sf
#2	Discarded	376.00'	2.410 in/hr Exfiltration over Surface area Phase-In= 0.01'

Discarded OutFlow Max=0.0 cfs @ 8.99 hrs HW=376.04' (Free Discharge) **2=Exfiltration** (Exfiltration Controls 0.0 cfs)

Primary OutFlow Max=0.3 cfs @ 12.01 hrs HW=377.70' TW=0.00' (Dynamic Tailwater) 1=Culvert (Inlet Controls 0.3 cfs @ 1.53 fps)

Summary for Link DP-1: DESIGN POINT 1

Inflow Area	a =	303,248 sf,	14.83% Impervious,	Inflow Depth = 0.27 "	for 2-year event
Inflow	=	1.3 cfs @	12.21 hrs, Volume=	6,813 cf	-
Primary	=	1.3 cfs @	12.21 hrs, Volume=	6,813 cf, Atte	n= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-96.00 hrs, dt= 0.01 hrs

85 & 95 West Street - Proposed Conditions

85 West Street Northborough JN-1207.03 - Proposed Type III 24-hr 2-year Rainfall=3.28"

Prepared by WDA Design Group

Printed 5/3/2021

HydroCAD® 10.10-5a s/n 11557 © 2020 HydroCAD Software Solutions LLC

Page 48

Summary for Link DP-2: DESIGN POINT 2

Inflow Area = 451,037 sf, 7.83% Impervious, Inflow Depth = 0.77" for 2-year event

Inflow 29,004 cf

5.3 cfs @ 12.29 hrs, Volume= 5.3 cfs @ 12.29 hrs, Volume= 29,004 cf, Atten= 0%, Lag= 0.0 min Primary

Primary outflow = Inflow, Time Span= 0.00-96.00 hrs, dt= 0.01 hrs

Outflow=5.8 cfs 29,307 cf

Page 49

Prepared by WDA Design Group

HydroCAD® 10.10-5a s/n 11557 © 2020 HydroCAD Software Solutions LLC

Time span=0.00-96.00 hrs, dt=0.01 hrs, 9601 points x 2 Runoff by SCS TR-20 method, UH=SCS, Weighted-CN Reach routing by Dyn-Stor-Ind method - Pond routing by Dyn-Stor-Ind method

readiliteding by by it etc. I	na mounda i ona roading by by motor ma mounda
SubcatchmentPDA-100: PDA-100	Runoff Area=44,067 sf 6.77% Impervious Runoff Depth=0.45" Flow Length=263' Tc=15.1 min CN=45 Runoff=0.2 cfs 1,646 cf
SubcatchmentPDA-101: PDA-101	Runoff Area=8,231 sf 34.50% Impervious Runoff Depth=1.31" Flow Length=178' Tc=6.0 min CN=60 Runoff=0.3 cfs 900 cf
SubcatchmentPDA-102: PDA-102	Runoff Area=64,057 sf 11.83% Impervious Runoff Depth=2.05" Flow Length=618' Tc=15.8 min CN=70 Runoff=2.6 cfs 10,949 cf
SubcatchmentPDA-103: PDA-103	Runoff Area=7,866 sf 52.29% Impervious Runoff Depth=3.59" Flow Length=356' Tc=6.0 min CN=87 Runoff=0.7 cfs 2,351 cf
SubcatchmentPDA-104: PDA-104	Runoff Area=60,851 sf 4.61% Impervious Runoff Depth=2.30" Flow Length=889' Tc=17.5 min CN=73 Runoff=2.6 cfs 11,644 cf
SubcatchmentPDA-105: PDA-105	Runoff Area=92,080 sf 9.15% Impervious Runoff Depth=2.30" Flow Length=797' Tc=21.7 min CN=73 Runoff=3.7 cfs 17,619 cf
SubcatchmentPDA-106: PDA-106 Flow Length=4	Runoff Area=22,980 sf 57.09% Impervious Runoff Depth=3.69" 89' Slope=0.0460 '/' Tc=7.2 min CN=88 Runoff=2.1 cfs 7,062 cf
SubcatchmentPDA-200: PDA-200	Runoff Area=313,513 sf 6.86% Impervious Runoff Depth=2.21" Flow Length=966' Tc=20.0 min CN=72 Runoff=12.4 cfs 57,824 cf
SubcatchmentPDA-201: Subcat PDA-20	Runoff Area=15,861 sf 17.40% Impervious Runoff Depth=2.73" Flow Length=228' Tc=6.0 min CN=78 Runoff=1.2 cfs 3,607 cf
SubcatchmentPDA-202: Subcat PDA-20	2 Runoff Area=110,630 sf 0.01% Impervious Runoff Depth=2.13" Flow Length=830' Tc=22.6 min CN=71 Runoff=4.0 cfs 19,652 cf
SubcatchmentRF-02: RF-02	Runoff Area=3,116 sf 100.00% Impervious Runoff Depth=4.78" Tc=0.0 min CN=98 Runoff=0.4 cfs 1,242 cf
SubcatchmentRF-03: RF-03	Runoff Area=1,685 sf 100.00% Impervious Runoff Depth=4.78" Tc=0.0 min CN=98 Runoff=0.2 cfs 672 cf
SubcatchmentRF-04: RF-04	Runoff Area=3,116 sf 100.00% Impervious Runoff Depth=4.78" Tc=0.0 min CN=98 Runoff=0.4 cfs 1,242 cf
SubcatchmentRF-05: RF-05	Runoff Area=3,116 sf 100.00% Impervious Runoff Depth=4.78" Tc=0.0 min CN=98 Runoff=0.4 cfs 1,242 cf
SubcatchmentRF-06: RF-06	Runoff Area=3,116 sf 100.00% Impervious Runoff Depth=4.78" Tc=0.0 min CN=98 Runoff=0.4 cfs 1,242 cf
Pond 1P: Pond	Peak Elev=320.37' Storage=139 cf Inflow=5.8 cfs 29,307 cf

85 West Street Northborough JN-1207.03 - Proposed Type III 24-hr 10-year Rainfall=5.02"

Prepared by WDA Design Group

HydroCAD® 10.10-5a s/n 11557 © 2020 HydroCAD Software Solutions LLC Printed 5/3/2021

Page 50

Pond INF-103: INF-103	Peak Elev=326.96' Storage=249 cf Inflow=1.5 cfs 5,236 cf Discarded=0.0 cfs 313 cf Primary=1.5 cfs 4,923 cf Outflow=1.5 cfs 5,236 cf
Pond INF-104: INF-104	Peak Elev=327.32' Storage=2,849 cf Inflow=2.8 cfs 20,262 cf Discarded=0.1 cfs 7,727 cf Primary=2.6 cfs 12,534 cf Outflow=2.8 cfs 20,262 cf
Pond INF-105: INF-105	Peak Elev=348.79' Storage=6,206 cf Inflow=3.7 cfs 17,619 cf Discarded=0.1 cfs 10,243 cf Primary=1.7 cfs 7,376 cf Outflow=1.8 cfs 17,619 cf
Pond INF-106: INF-106	Peak Elev=356.14' Storage=2,590 cf Inflow=2.1 cfs 7,062 cf Discarded=0.0 cfs 4,178 cf Primary=1.1 cfs 2,885 cf Outflow=1.1 cfs 7,062 cf
Pond INF-201: INF-201	Peak Elev=338.46' Storage=5,013 cf Inflow=4.6 cfs 23,983 cf Discarded=0.2 cfs 10,466 cf Primary=3.7 cfs 13,517 cf Outflow=3.9 cfs 23,983 cf
Pond INF-RF2: INF-RF2	Peak Elev=335.80' Storage=123 cf Inflow=0.4 cfs 1,242 cf Discarded=0.0 cfs 518 cf Primary=0.4 cfs 724 cf Outflow=0.4 cfs 1,242 cf
Pond INF-RF3: INF-RF3	Peak Elev=333.67' Storage=113 cf Inflow=0.2 cfs 672 cf Discarded=0.0 cfs 411 cf Primary=0.2 cfs 260 cf Outflow=0.2 cfs 672 cf
Pond INF-RF4: INF-RF4	Peak Elev=0.00' Storage=0 cf Discarded=0.0 cfs 0 cf Primary=0.0 cfs 0 cf
Pond INF-RF5: INF-RF5	Peak Elev=377.80' Storage=123 cf Inflow=0.4 cfs 1,242 cf Discarded=0.0 cfs 518 cf Primary=0.4 cfs 724 cf Outflow=0.4 cfs 1,242 cf
Pond INF-RF6: INF-RF6	Peak Elev=377.80' Storage=123 cf Inflow=0.4 cfs 1,242 cf Discarded=0.0 cfs 518 cf Primary=0.4 cfs 724 cf Outflow=0.4 cfs 1,242 cf
Link DP-1: DESIGN POIN	T 1 Inflow=5.9 cfs 30,953 cf Primary=5.9 cfs 30,953 cf
Link DP-2: DESIGN POIN	T2 Inflow=15.3 cfs 73,050 cf Primary=15.3 cfs 73,050 cf

Total Runoff Area = 754,285 sf Runoff Volume = 138,894 cf Average Runoff Depth = 2.21" 89.36% Pervious = 673,994 sf 10.64% Impervious = 80,291 sf

Page 51

HydroCAD® 10.10-5a s/n 11557 © 2020 HydroCAD Software Solutions LLC

Summary for Subcatchment PDA-100: PDA-100

0.2 cfs @ 12.44 hrs, Volume= 1,646 cf, Depth= 0.45" Runoff

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-96.00 hrs, dt= 0.01 hrs Type III 24-hr 10-year Rainfall=5.02"

_	Α	rea (sf)	CN	Description		
		2,894	98	Paved park	ing, HSG A	1
		37,895	39	>75% Gras	s cover, Go	ood, HSG A
		395	70	Woods, Go	od, HSG C	
		2,795	74	>75% Gras	s cover, Go	ood, HSG C
_		88	98	Paved park	ing, HSG [)
		44,067	45	Weighted A	verage	
		41,085	!	93.23% Pe	rvious Area	1
		2,982	(6.77% Impe	ervious Are	a
	_				_	
	Tc	Length	Slope	•	Capacity	Description
_	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
	11.2	50	0.0256	0.07		Sheet Flow,
						Woods: Light underbrush n= 0.400 P2= 3.20"
	3.9	213	0.0170	0.91		Shallow Concentrated Flow,
_						Short Grass Pasture Kv= 7.0 fps
	15.1	263	Total			

Summary for Subcatchment PDA-101: PDA-101

0.3 cfs @ 12.10 hrs, Volume= Runoff 900 cf, Depth= 1.31"

	Α	rea (sf)	CN	Description						
		5,156	39	39 >75% Grass cover, Good, HSG A						
		2,334	98	Paved park	ing, HSG A	1				
		235	74	>75% Ġras	s cover, Go	ood, HSG C				
		506	98	Paved park	ing, HSG C					
		8,231	60	Weighted A	verage					
		5,391	(65.50% Pei	vious Area					
		2,840	,	34.50% Imp	ervious Ar	ea				
	То	Longth	Clana	Valacity	Consoity	Description				
	Tc	Length	Slope	•	Capacity	Description				
_	(min)	(feet)	(ft/ft)		(cfs)					
	0.4	50	0.0900	2.19		Sheet Flow,				
						Smooth surfaces n= 0.011 P2= 3.20"				
	0.4	128	0.1076	5.28		Shallow Concentrated Flow,				
_						Unpaved Kv= 16.1 fps				
	0.8	178	Total.	Increased t	o minimum	Tc = 6.0 min				

Page 52

HydroCAD® 10.10-5a s/n 11557 © 2020 HydroCAD Software Solutions LLC

Summary for Subcatchment PDA-102: PDA-102

Runoff = 2.6 cfs @ 12.23 hrs, Volume= 10,949 cf, Depth= 2.05"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-96.00 hrs, dt= 0.01 hrs Type III 24-hr 10-year Rainfall=5.02"

A	rea (sf)	CN E	escription		
	11,117	39 >	75% Gras	s cover, Go	ood, HSG A
	3,051	98 F	aved park	ing, HSG A	\
	19,777	70 V	Voods, Go	od, HSG C	
	25,414	74 >	75% Gras	s cover, Go	ood, HSG C
	2,188	98 F	aved park	ing, HSG C	
	2,272	98 F	Roofs, HSG	S C	
	173	80 >	75% Gras	s cover, Go	ood, HSG D
	66	98 F	Paved park	ing, HSG [)
	64,057	70 V	Veighted A	verage	
	56,481	8	8.17% Per	vious Area	l
	7,576	1	1.83% Imp	pervious Ar	ea
Tc	Length	Slope	Velocity		Description
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
3.1	50	0.0908	0.27		Sheet Flow,
					Grass: Short n= 0.150 P2= 3.20"
8.5	360	0.0200	0.71		Shallow Concentrated Flow,
					Woodland Kv= 5.0 fps
4.2	208	0.0240	0.82	4.10	•
					Bot.W=2.00' D=1.00' Z= 3.0 '/' Top.W=8.00'
					n= 0.200
15.8	618	Total			

Summary for Subcatchment PDA-103: PDA-103

Runoff = 0.7 cfs @ 12.09 hrs, Volume= 2,351 cf, Depth= 3.59"

 Area (sf)	CN	Description			
3,753	74	>75% Grass cover, Good, HSG C			
4,113	98	Paved parking, HSG C			
 0	70	Woods, Good, HSG C			
7,866	87	Weighted Average			
3,753		47.71% Pervious Area			
4,113		52.29% Impervious Area			

85 West Street Northborough JN-1207.03 - Proposed Type III 24-hr 10-year Rainfall=5.02"

Prepared by WDA Design Group

Printed 5/3/2021

Page 53

HydroCAD® 10.10-5a s/n 11557 © 2020 HydroCAD Software Solutions LLC

 Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
0.3	36	0.0611	1.75		Sheet Flow,
					Smooth surfaces n= 0.011 P2= 3.20"
0.4	188	0.0189	8.17	14.44	Pipe Channel,
					18.0" Round Area= 1.8 sf Perim= 4.7' r= 0.38'
					n= 0.013
0.2	132	0.0902	10.59	52.95	Trap/Vee/Rect Channel Flow,
					Bot.W=2.00' D=1.00' Z= 3.0 '/' Top.W=8.00'
					n= 0.030 Short grass
0.9	356	Total, li	ncreased t	o minimum	Tc = 6.0 min

Summary for Subcatchment PDA-104: PDA-104

Runoff = 2.6 cfs @ 12.25 hrs, Volume= 11,644 cf, Depth= 2.30"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-96.00 hrs, dt= 0.01 hrs Type III 24-hr 10-year Rainfall=5.02"

_	Α	rea (sf)	CN E	Description							
		19,407	74 >	74 >75% Grass cover, Good, HSG C							
		38,640	70 V	Voods, Go	od, HSG C	,					
		2,804	98 F	Paved park	ing, HSG C						
		60,851	73 V	Veighted A	verage						
		58,047			rvious Area						
		2,804	4	.61% Impe	ervious Are	a					
		•		·							
	Tc	Length	Slope	Velocity	Capacity	Description					
_	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)						
	10.2	50	0.0324	0.08		Sheet Flow,					
						Woods: Light underbrush n= 0.400 P2= 3.20"					
	4.3	335	0.0689	1.31		Shallow Concentrated Flow,					
						Woodland Kv= 5.0 fps					
	1.1	151	0.1167	2.39		Shallow Concentrated Flow,					
						Short Grass Pasture Kv= 7.0 fps					
	1.6	131	0.0730	1.35		Shallow Concentrated Flow,					
						Woodland Kv= 5.0 fps					
	0.3	222	0.1039	11.16	3.90	· · · · · · · · · · · · · · · · · · ·					
						8.0" Round Area= 0.3 sf Perim= 2.1' r= 0.17'					
_						n= 0.013					
	17.5	889	Total								

Summary for Subcatchment PDA-105: PDA-105

Runoff = 3.7 cfs @ 12.32 hrs, Volume= 17,619 cf, Depth= 2.30"

85 West Street Northborough JN-1207.03 - Proposed Type III 24-hr 10-year Rainfall=5.02"

Prepared by WDA Design Group
HydroCAD® 10.10-5a s/n 11557 © 2020 HydroCAD Software Solutions LLC

Printed 5/3/2021 Page 54

	rea (sf)	CN D	escription						
	65,985	70 V	70 Woods, Good, HSG C						
	8,422	98 P	aved park	ing, HSG C					
	17,673	74 >	75% Ġras	s cover, Go	ood, HSG C				
	92,080	73 V	Veighted A	verage					
	83,658			vious Area					
	8,422	9	.15% Impe	ervious Are	a				
	,		•						
Tc	Length	Slope	Velocity	Capacity	Description				
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	·				
13.0	50	0.0176	0.06		Sheet Flow,				
					Woods: Light underbrush n= 0.400 P2= 3.20"				
5.0	347	0.0528	1.15		Shallow Concentrated Flow,				
					Woodland Kv= 5.0 fps				
0.1	30	0.3300	4.02		Shallow Concentrated Flow,				
					Short Grass Pasture Kv= 7.0 fps				
0.8	208	0.0684	4.21		Shallow Concentrated Flow,				
					Unpaved Kv= 16.1 fps				
2.8	162	0.0333	0.97	4.83	Trap/Vee/Rect Channel Flow,				
					Bot.W=2.00' D=1.00' Z= 3.0 '/' Top.W=8.00'				
					n= 0.200				
21.7	797	Total							

Summary for Subcatchment PDA-106: PDA-106

Runoff = 2.1 cfs @ 12.10 hrs, Volume= 7,062 cf, Depth= 3.69"

A	rea (sf)	CN I	Description				
	9,097	74 :	>75% Gras	s cover, Go	ood, HSG C		
	13,120	98 I	Paved park	ing, HSG C			
	763	70 \	Noods, Go	od, HSG C			
	22,980	88 \	Neighted A	verage			
	9,860	4	12.91% Pei	rvious Area			
	13,120	į	57.09% lmp	pervious Ar	ea		
Tc	Length	Slope	,	Capacity	Description		
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)			
7.2	489	0.0460	1.13	5.67	Trap/Vee/Rect Channel Flow,		
					Bot.W=2.00' D=1.00' Z= 3.0 '/' Top.W=8.00'		
					n= 0.200		

Page 55

HydroCAD® 10.10-5a s/n 11557 © 2020 HydroCAD Software Solutions LLC

Summary for Subcatchment PDA-200: PDA-200

Runoff = 12.4 cfs @ 12.29 hrs, Volume= 57,824 cf, Depth= 2.21"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-96.00 hrs, dt= 0.01 hrs Type III 24-hr 10-year Rainfall=5.02"

A	rea (sf)	CN E	Description					
	25,377	55 V	55 Woods, Good, HSG B					
	36,942	74 >	75% Gras	s cover, Go	ood, HSG C			
1	91,740	70 V	Voods, Go	od, HSG C				
	3,065				ood, HSG A			
	295		Roofs, HSG					
	3,073			ing, HSG C				
	277			ing, HSG A				
	266			ing, HSG D				
	11,813			ace, HSG C				
	5,791			ace, HSG D				
	25,648			od, HSG D				
	9,226				ood, HSG D			
	13,513		Veighted A	•				
	91,998	_	-	rvious Area				
	21,515	6	5.86% Impe	ervious Are	a			
-	1	01	V . I !4	0: 1	December			
Tc (min)	Length	Slope	Velocity	Capacity	Description			
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	OL (E)			
10.5	50	0.0296	0.08		Sheet Flow,			
2.4	047	0.0507	4 04		Woods: Light underbrush n= 0.400 P2= 3.20"			
3.4	247	0.0587	1.21		Shallow Concentrated Flow,			
2.6	248	0.0524	1.60		Woodland Kv= 5.0 fps Shallow Concentrated Flow,			
2.0	240	0.0324	1.00		Short Grass Pasture Kv= 7.0 fps			
1.8	207	0.1498	1.94		Shallow Concentrated Flow,			
1.0	201	0.1400	1.54		Woodland Kv= 5.0 fps			
0.4	87	0.0274	3.36		Shallow Concentrated Flow,			
0.1	0.	0.027	0.00		Paved Kv= 20.3 fps			
0.1	16	0.3333	4.04		Shallow Concentrated Flow,			
	. •				Short Grass Pasture Kv= 7.0 fps			
1.2	111	0.0901	1.50		Shallow Concentrated Flow,			
					Woodland Kv= 5.0 fps			
20.0	966	Total						

Summary for Subcatchment PDA-201: Subcat PDA-201

Runoff = 1.2 cfs @ 12.09 hrs, Volume= 3,607 cf, Depth= 2.73"

85 West Street Northborough JN-1207.03 - Proposed Type III 24-hr 10-year Rainfall=5.02"

Prepared by WDA Design Group
HydroCAD® 10.10-5a s/n 11557 © 2020 HydroCAD Software Solutions LLC
Page 56

	۸	roo (cf)	CN E)occription					
	^	rea (sf)							
		12,163	74 >	, ,					
		938	70 V	Woods, Good, HSG C					
		2,760	98 F	Paved park	ing, HSG C				
		15,861	78 V	78 Weighted Average					
		13,101	8	2.60% Pei	vious Area				
		2,760	1	7.40% Imp	ervious Ar	ea			
	<u></u>								
	Tc	Length	Slope	Velocity	Capacity	Description			
	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	'			
	0.5	31	0.0200	1.09	, ,	Sheet Flow,			
						Smooth surfaces n= 0.011 P2= 3.20"			
	0.3	197	0.0609	13.05	65.26	Trap/Vee/Rect Channel Flow,			
	0.0				00.20	Bot.W=2.00' D=1.00' Z= 3.0 '/' Top.W=8.00'			
						n= 0.020			
_	0.8	220	Total I	norogod t	o minimum				
	0.0	228	Total, Increased to minimum Tc = 6.0 min						

Summary for Subcatchment PDA-202: Subcat PDA-202

4.0 cfs @ 12.33 hrs, Volume= 19,652 cf, Depth= 2.13" Runoff

	Α	rea (sf)	CN E	Description				
41,066 74 >75% Grass co					s cover, Go	ood, HSG C		
10 98				Paved parking, HSG C				
		69,554	70 V	Woods, Good, HSG C				
	1	10,630	71 V	Weighted Average				
	1	10,620	9	9.99% Pei	rvious Area			
		10	0	.01% Impe	ervious Are	a		
	Тс	Length	Slope	Velocity	Capacity	Description		
	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)			
	11.3	50	0.0250	0.07		Sheet Flow,		
						Woods: Light underbrush n= 0.400 P2= 3.20"		
	9.2	308	0.0500	0.56		Shallow Concentrated Flow,		
						Forest w/Heavy Litter Kv= 2.5 fps		
	1.7	169	0.0592	1.70		Shallow Concentrated Flow,		
						Short Grass Pasture Kv= 7.0 fps		
	0.4	303	0.0460	11.34	56.72	Trap/Vee/Rect Channel Flow,		
						Bot.W=2.00' D=1.00' Z= 3.0 '/' Top.W=8.00'		
_						n= 0.020		
	22.6	830	Total					

85 West Street Northborough JN-1207.03 - Proposed Type III 24-hr 10-year Rainfall=5.02"

Prepared by WDA Design Group

Printed 5/3/2021

Page 57

HydroCAD® 10.10-5a s/n 11557 © 2020 HydroCAD Software Solutions LLC

Summary for Subcatchment RF-02: RF-02

Runoff = 0.4 cfs @ 12.00 hrs, Volume= 1,242 cf, Depth= 4.78"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-96.00 hrs, dt= 0.01 hrs Type III 24-hr 10-year Rainfall=5.02"

 Area (sf)	CN	Description
3,116	98	Roofs, HSG C
 3,116		100.00% Impervious Area

Summary for Subcatchment RF-03: RF-03

Runoff = 0.2 cfs @ 12.00 hrs, Volume= 672 cf, Depth= 4.78"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-96.00 hrs, dt= 0.01 hrs Type III 24-hr 10-year Rainfall=5.02"

 Area (sf)	CN	Description
1,685	98	Roofs, HSG C
1,685		100.00% Impervious Area

Summary for Subcatchment RF-04: RF-04

Runoff = 0.4 cfs @ 12.00 hrs, Volume= 1,242 cf, Depth= 4.78"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-96.00 hrs, dt= 0.01 hrs Type III 24-hr 10-year Rainfall=5.02"

Area (sf)	CN	Description
3,116	98	Roofs, HSG C
3,116		100.00% Impervious Area

Summary for Subcatchment RF-05: RF-05

Runoff = 0.4 cfs @ 12.00 hrs, Volume= 1,242 cf, Depth= 4.78"

 Area (sf)	CN	Description
3,116	98	Roofs, HSG C
 3,116		100.00% Impervious Area

\/aluma

Page 58

HydroCAD® 10.10-5a s/n 11557 © 2020 HydroCAD Software Solutions LLC

Summary for Subcatchment RF-06: RF-06

Runoff = 0.4 cfs @ 12.00 hrs, Volume= 1,242 cf, Depth= 4.78"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-96.00 hrs, dt= 0.01 hrs Type III 24-hr 10-year Rainfall=5.02"

 Area (sf)	CN	Description
3,116	98	Roofs, HSG C
 3.116		100.00% Impervious Area

Summary for Pond 1P: Pond

Inflow Area = 259,181 sf, 16.20% Impervious, Inflow Depth = 1.36" for 10-year event
Inflow = 5.8 cfs @ 12.32 hrs, Volume= 29,307 cf
Outflow = 5.8 cfs @ 12.33 hrs, Volume= 29,307 cf, Atten= 0%, Lag= 0.3 min
Primary = 5.8 cfs @ 12.33 hrs, Volume= 29,307 cf

Routing by Dyn-Stor-Ind method, Time Span= 0.00-96.00 hrs, dt= 0.01 hrs / 2 Peak Elev= 320.37' @ 12.33 hrs Surf.Area= 481 sf Storage= 139 cf

Plug-Flow detention time= 0.6 min calculated for 29,304 cf (100% of inflow) Center-of-Mass det. time= 0.6 min (832.2 - 831.6)

Avail Ctorogo Ctorogo Description

Volume	Inv	ert Avail.Sto	orage Storage	Description		_
#1	320.	00' 1,8	92 cf Custom	Stage Data (Pr	rismatic)Listed below (Recalc)	
Elevatio		Surf.Area (sq-ft)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)		
320.0	-	269	0	0		
321.0 322.0	-	841 1,833	555 1,337	555 1,892		
Device	Routing	Invert	Outlet Devices	S		_
#1	Primary	320.20'	L= 15.0' CPF	headwall, Ke= 0.900 320.00' S= 0.0133 '/' Cc= 0.900		

n= 0.013, Flow Area= 0.35 sf

#2 Primary

320.00'

10.0' long x 8.0' breadth Broad-Crested Rectangular Weir

Head (feet) 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 1.80 2.00

2.50 3.00 3.50 4.00 4.50 5.00 5.50

Coef. (English) 2.43 2.54 2.70 2.69 2.68 2.68 2.66 2.64 2.64

2.64 2.65 2.65 2.66 2.66 2.68 2.70 2.74

Primary OutFlow Max=5.8 cfs @ 12.33 hrs HW=320.37' TW=0.00' (Dynamic Tailwater)

-1=Culvert (Inlet Controls 0.1 cfs @ 1.11 fps)

-2=Broad-Crested Rectangular Weir (Weir Controls 5.7 cfs @ 1.54 fps)

Page 59

HydroCAD® 10.10-5a s/n 11557 © 2020 HydroCAD Software Solutions LLC

Summary for Pond INF-103: INF-103

Inflow Area =	30,846 sf, 55.8	87% Impervious, Ir	nflow Depth = 2.04"	for 10-year event
Inflow =	1.5 cfs @ 12.2	23 hrs, Volume=	5,236 cf	
Outflow =	1.5 cfs @ 12.2	25 hrs, Volume=	5,236 cf, Atte	n= 1%, Lag= 1.3 min
Discarded =	0.0 cfs @ 7.5	57 hrs, Volume=	313 cf	
Primary =	1.5 cfs @ 12.2	25 hrs, Volume=	4,923 cf	

Routing by Dyn-Stor-Ind method, Time Span= 0.00-96.00 hrs, dt= 0.01 hrs / 2 Peak Elev= 326.96' @ 12.25 hrs Surf.Area= 473 sf Storage= 249 cf

Plug-Flow detention time= 30.7 min calculated for 5,235 cf (100% of inflow) Center-of-Mass det. time= 30.8 min (834.0 - 803.2)

Volume	Invert	Avail.Storage	Storage Description
#1A	326.00'	310 cf	12.42'W x 38.07'L x 2.00'H Field A
			945 cf Overall - 171 cf Embedded = 774 cf x 40.0% Voids
#2A	326.50'	171 cf	ADS_StormTech SC-160LP +Capx 25 Inside #1
			Effective Size= 18.0"W x 12.0"H => 0.96 sf x 7.12'L = 6.8 cf
			Overall Size= 25.0"W x 12.0"H x 7.56'L with 0.44' Overlap
			25 Chambers in 5 Rows
		481 cf	Total Available Storage

Storage Group A created with Chamber Wizard

Device	Routing	Invert	Outlet Devices
#1	Primary	326.56'	6.0" Vert. Orifice/Grate X 4.00 C= 0.600
			Limited to weir flow at low heads
#2	Discarded	326.00'	0.276 in/hr Exfiltration - Loamy Sand over Surface area
			Phase-In= 0.01'

Discarded OutFlow Max=0.0 cfs @ 7.57 hrs HW=326.02' (Free Discharge) **2=Exfiltration - Loamy Sand** (Exfiltration Controls 0.0 cfs)

Primary OutFlow Max=1.5 cfs @ 12.25 hrs HW=326.96' TW=320.34' (Dynamic Tailwater) 1=Orifice/Grate (Orifice Controls 1.5 cfs @ 2.16 fps)

Summary for Pond INF-104: INF-104

Inflow Area =	156,047 sf,	9.19% Impervious,	Inflow Depth = 1.56"	for 10-year event
Inflow =	2.8 cfs @	12.62 hrs, Volume=	20,262 cf	•
Outflow =	2.8 cfs @	12.66 hrs, Volume=	20,262 cf, Att	en= 2%, Lag= 2.5 min
Discarded =	0.1 cfs @	11.37 hrs, Volume=	7,727 cf	_
Primary =	2.6 cfs @	12.66 hrs, Volume=	12,534 cf	

Routing by Dyn-Stor-Ind method, Time Span= 0.00-96.00 hrs, dt= 0.01 hrs / 2 Peak Elev= 327.32' @ 12.66 hrs Surf.Area= 1,889 sf Storage= 2,849 cf

Plug-Flow detention time= 73.4 min calculated for 20,260 cf (100% of inflow) Center-of-Mass det. time= 73.4 min (914.9 - 841.5)

Page 60

HydroCAD® 10.10-5a s/n 11557 © 2020 HydroCAD Software Solutions LLC

Volume	Invert	Avail.Storage	Storage Description
#1A	325.10'	1,726 cf	25.25'W x 74.82'L x 3.50'H Field A
			6,612 cf Overall - 2,297 cf Embedded = 4,315 cf x 40.0% Voids
#2A	325.60'	2,297 cf	ADS_StormTech SC-740 +Cap x 50 Inside #1
			Effective Size= 44.6"W x 30.0"H => 6.45 sf x 7.12'L = 45.9 cf
			Overall Size= 51.0"W x 30.0"H x 7.56'L with 0.44' Overlap
			50 Chambers in 5 Rows
		4 000 of	Total Available Standard

4,023 cf Total Available Storage

Storage Group A created with Chamber Wizard

Device	Routing	Invert	Outlet Devices
#1	Primary	327.14'	6.0" Vert. Orifice/Grate X 2.00 C= 0.600
	•		Limited to weir flow at low heads
#2	Primary	326.81'	10.0" Vert. Orifice/Grate C= 0.600 Limited to weir flow at low heads
#3	Primary	326.64'	12.0" Vert. Orifice/Grate C= 0.600 Limited to weir flow at low heads
#4	Discarded	325.10'	3.072 in/hr Exfiltration - Loamy Sand over Surface area
			Phase-In= 0.01'

Discarded OutFlow Max=0.1 cfs @ 11.37 hrs HW=325.14' (Free Discharge) **4=Exfiltration - Loamy Sand** (Exfiltration Controls 0.1 cfs)

Primary OutFlow Max=2.6 cfs @ 12.66 hrs HW=327.32' TW=320.30' (Dynamic Tailwater)

1=Orifice/Grate (Orifice Controls 0.2 cfs @ 1.44 fps)

—2=Orifice/Grate (Orifice Controls 0.8 cfs @ 2.43 fps)

-3=Orifice/Grate (Orifice Controls 1.6 cfs @ 2.81 fps)

Summary for Pond INF-105: INF-105

Inflow Area =	92,080 sf, 9.15% Impervious, Infl	ow Depth = 2.30" for 10-year event
Inflow =	3.7 cfs @ 12.32 hrs, Volume=	17,619 cf
Outflow =	1.8 cfs @ 12.68 hrs, Volume=	17,619 cf, Atten= 51%, Lag= 22.0 min
Discarded =	0.1 cfs @ 11.30 hrs, Volume=	10,243 cf
Primary =	1.7 cfs @ 12.68 hrs, Volume=	7,376 cf

Routing by Dyn-Stor-Ind method, Time Span= 0.00-96.00 hrs, dt= 0.01 hrs / 2 Peak Elev= 348.79' @ 12.68 hrs Surf.Area= 3,941 sf Storage= 6,206 cf

Plug-Flow detention time= 282.5 min calculated for 17,617 cf (100% of inflow) Center-of-Mass det. time= 282.5 min (1,136.9 - 854.3)

Volume	Invert	Avail.Storage	Storage Description
#1A	346.50'	3,532 cf	44.25'W x 89.06'L x 3.50'H Field A
			13,793 cf Overall - 4,962 cf Embedded = 8,831 cf x 40.0% Voids
#2A	347.00'	4,962 cf	ADS_StormTech SC-740 +Cap x 108 Inside #1
			Effective Size= 44.6"W x 30.0"H => 6.45 sf x 7.12'L = 45.9 cf
			Overall Size= 51.0"W x 30.0"H x 7.56'L with 0.44' Overlap
			108 Chambers in 9 Rows
		0.404.5	Tatal Assallable Ottomore

8,494 cf Total Available Storage

HydroCAD® 10.10-5a s/n 11557 © 2020 HydroCAD Software Solutions LLC

Storage Group A created with Chamber Wizard

Device	Routing	Invert	Outlet Devices
#1	Primary	348.54'	6.0" Vert. Orifice/Grate C= 0.600 Limited to weir flow at low heads
#2	Primary	348.38'	8.0" Vert. Orifice/Grate C= 0.600 Limited to weir flow at low heads
#3	Primary	348.21'	10.0" Vert. Orifice/Grate C= 0.600 Limited to weir flow at low heads
#4	Discarded	346.50'	1.284 in/hr Exfiltration - Sandy Loam over Surface area
			Phase-In= 0.01'

Discarded OutFlow Max=0.1 cfs @ 11.30 hrs HW=346.54' (Free Discharge) **4=Exfiltration - Sandy Loam** (Exfiltration Controls 0.1 cfs)

Primary OutFlow Max=1.7 cfs @ 12.68 hrs HW=348.79' TW=327.32' (Dynamic Tailwater)

1=Orifice/Grate (Orifice Controls 0.2 cfs @ 1.69 fps)

-2=Orifice/Grate (Orifice Controls 0.5 cfs @ 2.17 fps)

-3=Orifice/Grate (Orifice Controls 1.0 cfs @ 2.59 fps)

Summary for Pond INF-106: INF-106

Inflow Area =	22,980 sf,	57.09% Impervious,	Inflow Depth = 3.69" for 10-year event
Inflow =	2.1 cfs @	12.10 hrs, Volume=	7,062 cf
Outflow =	1.1 cfs @	12.25 hrs, Volume=	7,062 cf, Atten= 47%, Lag= 8.9 min
Discarded =	0.0 cfs @	9.26 hrs, Volume=	4,178 cf
Primary =	1.1 cfs @	12.25 hrs, Volume=	2.885 cf

Routing by Dyn-Stor-Ind method, Time Span= 0.00-96.00 hrs, dt= 0.01 hrs / 2 Peak Elev= 356.14' @ 12.25 hrs Surf.Area= 786 sf Storage= 2,590 cf

Plug-Flow detention time= 432.4 min calculated for 7,062 cf (100% of inflow) Center-of-Mass det. time= 432.5 min (1,231.3 - 798.9)

Volume	Invert	Avail.Storage	Storage Description
#1A	351.25'	1,389 cf	28.50'W x 27.59'L x 6.75'H Field A
			5,308 cf Overall - 1,834 cf Embedded = 3,474 cf x 40.0% Voids
#2A	352.00'	1,834 cf	ADS_StormTech MC-4500 b +Capx 15 Inside #1
			Effective Size= 90.4"W x 60.0"H => 26.46 sf x 4.03'L = 106.5 cf
			Overall Size= 100.0"W x 60.0"H x 4.33'L with 0.31' Overlap
			15 Chambers in 3 Rows
			Cap Storage= +39.5 cf x 2 x 3 rows = 237.0 cf
		0.004.5	T () A () 1 0 (

3,224 cf Total Available Storage

Storage Group A created with Chamber Wizard

Device	Routing	Invert	Outlet Devices
#1	Primary	355.55'	6.0" Vert. Orifice/Grate X 2.00 C= 0.600
			Limited to weir flow at low heads
#2	Discarded	351.25'	1.758 in/hr Exfiltration - Sandy Loam over Surface area
			Phase-In= 0.01'

Page 62

HydroCAD® 10.10-5a s/n 11557 © 2020 HydroCAD Software Solutions LLC

Discarded OutFlow Max=0.0 cfs @ 9.26 hrs HW=351.32' (Free Discharge) **1**—2=Exfiltration - Sandy Loam (Exfiltration Controls 0.0 cfs)

Primary OutFlow Max=1.1 cfs @ 12.25 hrs HW=356.14' TW=326.96' (Dynamic Tailwater) 1=Orifice/Grate (Orifice Controls 1.1 cfs @ 2.83 fps)

Summary for Pond INF-201: INF-201

Inflow Area =	129,607 sf,	4.54% Impervious,	Inflow Depth = 2.22" for 10-year event
Inflow =	4.6 cfs @	12.31 hrs, Volume=	23,983 cf
Outflow =	3.9 cfs @	12.45 hrs, Volume=	23,983 cf, Atten= 15%, Lag= 8.5 min
Discarded =	0.2 cfs @	11.24 hrs, Volume=	10,466 cf
Primary =	3.7 cfs @	12.45 hrs, Volume=	13,517 cf

Routing by Dyn-Stor-Ind method, Time Span= 0.00-96.00 hrs, dt= 0.01 hrs / 2 Peak Elev= 338.46' @ 12.45 hrs Surf.Area= 3,236 sf Storage= 5,013 cf

Plug-Flow detention time= 99.5 min calculated for 23,983 cf (100% of inflow) Center-of-Mass det. time= 99.5 min (951.2 - 851.7)

Volume	Invert	Avail.Storage	Storage Description
#1A	336.20'	2,914 cf	39.50'W x 81.94'L x 3.50'H Field A
			11,328 cf Overall - 4,043 cf Embedded = 7,285 cf x 40.0% Voids
#2A	336.70'	4,043 cf	ADS_StormTech SC-740 +Cap x 88 Inside #1
			Effective Size= 44.6"W x 30.0"H => 6.45 sf x 7.12'L = 45.9 cf
			Overall Size= 51.0"W x 30.0"H x 7.56'L with 0.44' Overlap
			88 Chambers in 8 Rows
•		6,957 cf	Total Available Storage

Storage Group A created with Chamber Wizard

Device	Routing	Invert	Outlet Devices
#1	Primary	337.45'	15.0" Vert. Orifice/Grate C= 0.600 Limited to weir flow at low heads
#2	Primary	338.24'	6.0" Vert. Orifice/Grate C= 0.600 Limited to weir flow at low heads
#3	Discarded	336.20'	2.262 in/hr Exfiltration - Sandy Loam over Surface area
			Phase-In= 0.01'

Discarded OutFlow Max=0.2 cfs @ 11.24 hrs HW=336.24' (Free Discharge) **1 3=Exfiltration - Sandy Loam** (Exfiltration Controls 0.2 cfs)

Primary OutFlow Max=3.7 cfs @ 12.45 hrs HW=338.46' TW=0.00' (Dynamic Tailwater) **-1=Orifice/Grate** (Orifice Controls 3.6 cfs @ 3.41 fps) -2=Orifice/Grate (Orifice Controls 0.1 cfs @ 1.58 fps)

Page 63

HydroCAD® 10.10-5a s/n 11557 © 2020 HydroCAD Software Solutions LLC

Summary for Pond INF-RF2: INF-RF2

Inflow Area =	3,116 sf,100.00% Impervious,	Inflow Depth = 4.78" for 10-year event
Inflow =	0.4 cfs @ 12.00 hrs, Volume=	1,242 cf
Outflow =	0.4 cfs @ 12.01 hrs, Volume=	1,242 cf, Atten= 4%, Lag= 0.6 min
Discarded =	0.0 cfs @ 7.50 hrs, Volume=	518 cf
Primary =	0.4 cfs @ 12.01 hrs, Volume=	724 cf

Routing by Dyn-Stor-Ind method, Time Span= 0.00-96.00 hrs, dt= 0.01 hrs / 2 Peak Elev= 335.80' @ 12.01 hrs Surf.Area= 118 sf Storage= 123 cf

Plug-Flow detention time= 61.7 min calculated for 1,242 cf (100% of inflow) Center-of-Mass det. time= 61.7 min (804.1 - 742.4)

Volume	Invert	Avail.Storage	Storage Description
#1A	334.00'	129 cf	11.00'W x 10.74'L x 3.50'H Field A
			413 cf Overall - 92 cf Embedded = 321 cf x 40.0% Voids
#2A	334.50'	92 cf	ADS_StormTech SC-740 +Cap x 2 Inside #1
			Effective Size= 44.6"W x 30.0"H => 6.45 sf x 7.12'L = 45.9 cf
			Overall Size= 51.0"W x 30.0"H x 7.56'L with 0.44' Overlap
			2 Chambers in 2 Rows
		220 cf	Total Available Storage

Storage Group A created with Chamber Wizard

Device	Routing	Invert	Outlet Devices
#1	Discarded	334.00'	2.410 in/hr Exfiltration over Surface area Phase-In= 0.01'
#2	Primary	335.38'	8.0" Round Culvert
	•		L= 52.0' CMP, projecting, no headwall, Ke= 0.900
			Inlet / Outlet Invert= 335.38' / 333.00' S= 0.0458 '/' Cc= 0.900
			n= 0.013, Flow Area= 0.35 sf

Discarded OutFlow Max=0.0 cfs @ 7.50 hrs HW=334.04' (Free Discharge) **1=Exfiltration** (Exfiltration Controls 0.0 cfs)

Primary OutFlow Max=0.4 cfs @ 12.01 hrs HW=335.80' TW=0.00' (Dynamic Tailwater) 2=Culvert (Inlet Controls 0.4 cfs @ 1.74 fps)

Summary for Pond INF-RF3: INF-RF3

Inflow Area =	1,685 sf,100.00% Impervious,	Inflow Depth = 4.78" for 10-year event
Inflow =	0.2 cfs @ 12.00 hrs, Volume=	672 cf
Outflow =	0.2 cfs @ 12.01 hrs, Volume=	672 cf, Atten= 6%, Lag= 0.8 min
Discarded =	0.0 cfs @ 9.38 hrs, Volume=	411 cf
Primary =	0.2 cfs @ 12.01 hrs, Volume=	260 cf

Routing by Dyn-Stor-Ind method, Time Span= 0.00-96.00 hrs, dt= 0.01 hrs / 2 Peak Elev= 333.67' @ 12.01 hrs Surf.Area= 118 sf Storage= 113 cf

Plug-Flow detention time= 72.3 min calculated for 672 cf (100% of inflow)

85 West Street Northborough JN-1207.03 - Proposed Type III 24-hr 10-year Rainfall=5.02"

Prepared by WDA Design Group

Printed 5/3/2021

HydroCAD® 10.10-5a s/n 11557 © 2020 HydroCAD Software Solutions LLC

Page 64

Center-of-Mass det. time= 72.3 min (814.7 - 742.4)

Volume	Invert	Avail.Storage	Storage Description
#1A	332.00'	129 cf	11.00'W x 10.74'L x 3.50'H Field A
			413 cf Overall - 92 cf Embedded = 321 cf x 40.0% Voids
#2A	332.50'	92 cf	ADS_StormTech SC-740 +Capx 2 Inside #1
			Effective Size= 44.6"W x 30.0"H => 6.45 sf x 7.12'L = 45.9 cf
			Overall Size= 51.0"W x 30.0"H x 7.56'L with 0.44' Overlap
			2 Chambers in 2 Rows
		202	T () A ()) O (

220 cf Total Available Storage

Storage Group A created with Chamber Wizard

Device	Routing	Invert	Outlet Devices
#1	Discarded	332.00'	2.410 in/hr Exfiltration over Surface area Phase-In= 0.01'
#2	Primary	333.38'	8.0" Round Culvert
	-		L= 57.0' CMP, projecting, no headwall, Ke= 0.900
			Inlet / Outlet Invert= 333.38' / 331.00' S= 0.0418 '/' Cc= 0.900
			n= 0.013, Flow Area= 0.35 sf

Discarded OutFlow Max=0.0 cfs @ 9.38 hrs HW=332.04' (Free Discharge) 1=Exfiltration (Exfiltration Controls 0.0 cfs)

Primary OutFlow Max=0.2 cfs @ 12.01 hrs HW=333.67' TW=0.00' (Dynamic Tailwater) 2=Culvert (Inlet Controls 0.2 cfs @ 1.45 fps)

Summary for Pond INF-RF4: INF-RF4

Volume	Invert	Avail.Storage	Storage Description
#1A	366.00'	129 cf	11.00'W x 10.74'L x 3.50'H Field A
			413 cf Overall - 92 cf Embedded = 321 cf x 40.0% Voids
#2A	366.50'	92 cf	112 0 _ 0 to 1111
			Effective Size= 44.6"W x 30.0"H => 6.45 sf x 7.12'L = 45.9 cf
			Overall Size= 51.0"W x 30.0"H x 7.56'L with 0.44' Overlap
			2 Chambers in 2 Rows
		220 of	Total Available Storage

220 cf Total Available Storage

Storage Group A created with Chamber Wizard

Device	Routing	Invert	Outlet Devices
#1	Discarded	366.00'	2.410 in/hr Exfiltration over Surface area Phase-In= 0.01'
#2	Primary	367.38'	8.0" Round Culvert
	-		L= 37.0' CMP, projecting, no headwall, Ke= 0.900
			Inlet / Outlet Invert= 367.38' / 366.00' S= 0.0373 '/' Cc= 0.900
			n= 0.013 Flow Area= 0.35 sf

85 West Street Northborough JN-1207.03 - Proposed Type III 24-hr 10-year Rainfall=5.02"

Prepared by WDA Design Group

Printed 5/3/2021

Page 65

HydroCAD® 10.10-5a s/n 11557 © 2020 HydroCAD Software Solutions LLC

Discarded OutFlow Max=0.0 cfs @ 0.00 hrs HW=0.00' (Free Discharge) 1=Exfiltration (Controls 0.0 cfs)

Primary OutFlow Max=0.0 cfs @ 0.00 hrs HW=0.00' (Free Discharge) 2=Culvert (Controls 0.0 cfs)

Summary for Pond INF-RF5: INF-RF5

Inflow Area =	3,116 sf,100.00% Impervious,	Inflow Depth = 4.78" for 10-year event
Inflow =	0.4 cfs @ 12.00 hrs, Volume=	1,242 cf
Outflow =	0.4 cfs @ 12.01 hrs, Volume=	1,242 cf, Atten= 4%, Lag= 0.6 min
Discarded =	0.0 cfs @ 7.50 hrs, Volume=	518 cf
Primary =	0.4 cfs @ 12.01 hrs, Volume=	724 cf

Routing by Dyn-Stor-Ind method, Time Span= 0.00-96.00 hrs, dt= 0.01 hrs / 2 Peak Elev= 377.80' @ 12.01 hrs Surf.Area= 118 sf Storage= 123 cf

Plug-Flow detention time= 61.7 min calculated for 1,242 cf (100% of inflow) Center-of-Mass det. time= 61.7 min (804.1 - 742.4)

Volume	Invert	Avail.Storage	Storage Description
#1A	376.00'	129 cf	11.00'W x 10.74'L x 3.50'H Field A
			413 cf Overall - 92 cf Embedded = 321 cf x 40.0% Voids
#2A	376.50'	92 cf	ADS_StormTech SC-740 +Cap x 2 Inside #1
			Effective Size= 44.6"W x 30.0"H => 6.45 sf x 7.12'L = 45.9 cf
			Overall Size= 51.0"W x 30.0"H x 7.56'L with 0.44' Overlap
			2 Chambers in 2 Rows
		220 cf	Total Available Storage

Storage Group A created with Chamber Wizard

Device	Routing	Invert	Outlet Devices
#1	Primary	377.38'	8.0" Round Culvert
	·		L= 16.0' CMP, projecting, no headwall, Ke= 0.900 Inlet / Outlet Invert= 377.38' / 376.00' S= 0.0862 '/' Cc= 0.900 n= 0.013, Flow Area= 0.35 sf
#2	Discarded	376.00'	2.410 in/hr Exfiltration over Surface area Phase-In= 0.01'

Discarded OutFlow Max=0.0 cfs @ 7.50 hrs HW=376.04' (Free Discharge) **2=Exfiltration** (Exfiltration Controls 0.0 cfs)

Primary OutFlow Max=0.4 cfs @ 12.01 hrs HW=377.80' TW=337.04' (Dynamic Tailwater) 1=Culvert (Inlet Controls 0.4 cfs @ 1.74 fps)

HydroCAD® 10.10-5a s/n 11557 © 2020 HydroCAD Software Solutions LLC

Summary for Pond INF-RF6: INF-RF6

Inflow Area =	3,116 sf,100.00% Impervious,	Inflow Depth = 4.78" for 10-year event
Inflow =	0.4 cfs @ 12.00 hrs, Volume=	1,242 cf
Outflow =	0.4 cfs @ 12.01 hrs, Volume=	1,242 cf, Atten= 4%, Lag= 0.6 min
Discarded =	0.0 cfs @ 7.50 hrs, Volume=	518 cf
Primary =	0.4 cfs @ 12.01 hrs, Volume=	724 cf

Routing by Dyn-Stor-Ind method, Time Span= 0.00-96.00 hrs, dt= 0.01 hrs / 2 Peak Elev= 377.80' @ 12.01 hrs Surf.Area= 118 sf Storage= 123 cf

Plug-Flow detention time= 61.7 min calculated for 1,242 cf (100% of inflow) Center-of-Mass det. time= 61.7 min (804.1 - 742.4)

Volume	Invert	Avail.Storage	Storage Description
#1A	376.00'	129 cf	11.00'W x 10.74'L x 3.50'H Field A
			413 cf Overall - 92 cf Embedded = 321 cf x 40.0% Voids
#2A	376.50'	92 cf	ADS_StormTech SC-740 +Cap x 2 Inside #1
			Effective Size= 44.6"W x 30.0"H => 6.45 sf x 7.12'L = 45.9 cf
			Overall Size= 51.0"W x 30.0"H x 7.56'L with 0.44' Overlap
			2 Chambers in 2 Rows
		220 cf	Total Available Storage

Storage Group A created with Chamber Wizard

Device	Routing	Invert	Outlet Devices
#1	Primary	377.38'	8.0" Round Culvert
	•		L= 58.0' CMP, projecting, no headwall, Ke= 0.900
			Inlet / Outlet Invert= 377.38' / 376.00' S= 0.0238 '/' Cc= 0.900
			n= 0.013, Flow Area= 0.35 sf
#2	Discarded	376.00'	2.410 in/hr Exfiltration over Surface area Phase-In= 0.01'

Discarded OutFlow Max=0.0 cfs @ 7.50 hrs HW=376.04' (Free Discharge) **2=Exfiltration** (Exfiltration Controls 0.0 cfs)

Primary OutFlow Max=0.4 cfs @ 12.01 hrs HW=377.80' TW=0.00' (Dynamic Tailwater) 1=Culvert (Inlet Controls 0.4 cfs @ 1.74 fps)

Summary for Link DP-1: DESIGN POINT 1

Inflow Area	a =	303,248 sf,	14.83% Impervious,	Inflow Depth = 1.22"	for 10-year event
Inflow	=	5.9 cfs @	12.33 hrs, Volume=	30,953 cf	•
Primary	=	5.9 cfs @	12.33 hrs, Volume=	30,953 cf, Atte	n= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-96.00 hrs, dt= 0.01 hrs

85 & 95 West Street - Proposed Conditions

85 West Street Northborough JN-1207.03 - Proposed Type III 24-hr 10-year Rainfall=5.02"

Prepared by WDA Design Group

Printed 5/3/2021

Page 67

HydroCAD® 10.10-5a s/n 11557 © 2020 HydroCAD Software Solutions LLC

Summary for Link DP-2: DESIGN POINT 2

Inflow Area = 451,037 sf, 7.83% Impervious, Inflow Depth = 1.94" for 10-year event

Inflow 73,050 cf

15.3 cfs @ 12.33 hrs, Volume= 15.3 cfs @ 12.33 hrs, Volume= 73,050 cf, Atten= 0%, Lag= 0.0 min Primary

Primary outflow = Inflow, Time Span= 0.00-96.00 hrs, dt= 0.01 hrs

Outflow=16.8 cfs 76,154 cf

Page 68

Prepared by WDA Design Group

HydroCAD® 10.10-5a s/n 11557 © 2020 HydroCAD Software Solutions LLC

Time span=0.00-96.00 hrs, dt=0.01 hrs, 9601 points x 2 Runoff by SCS TR-20 method, UH=SCS, Weighted-CN Reach routing by Dyn-Stor-Ind method - Pond routing by Dyn-Stor-Ind method

• • •	
SubcatchmentPDA-100: PDA-100	Runoff Area=44,067 sf 6.77% Impervious Runoff Depth=1.62" Flow Length=263' Tc=15.1 min CN=45 Runoff=1.2 cfs 5,954 cf
SubcatchmentPDA-101: PDA-101	Runoff Area=8,231 sf 34.50% Impervious Runoff Depth=3.17" Flow Length=178' Tc=6.0 min CN=60 Runoff=0.7 cfs 2,174 cf
SubcatchmentPDA-102: PDA-102	Runoff Area=64,057 sf 11.83% Impervious Runoff Depth=4.28" low Length=618' Tc=15.8 min CN=70 Runoff=5.5 cfs 22,825 cf
SubcatchmentPDA-103: PDA-103	Runoff Area=7,866 sf 52.29% Impervious Runoff Depth=6.24" Flow Length=356' Tc=6.0 min CN=87 Runoff=1.3 cfs 4,087 cf
SubcatchmentPDA-104: PDA-104	Runoff Area=60,851 sf 4.61% Impervious Runoff Depth=4.62" low Length=889' Tc=17.5 min CN=73 Runoff=5.4 cfs 23,405 cf
SubcatchmentPDA-105: PDA-105	Runoff Area=92,080 sf 9.15% Impervious Runoff Depth=4.62" low Length=797' Tc=21.7 min CN=73 Runoff=7.4 cfs 35,416 cf
SubcatchmentPDA-106: PDA-106 Flow Length=489'	Runoff Area=22,980 sf 57.09% Impervious Runoff Depth=6.35" Slope=0.0460 '/' Tc=7.2 min CN=88 Runoff=3.6 cfs 12,166 cf
SubcatchmentPDA-200: PDA-200 Flow	Runoff Area=313,513 sf 6.86% Impervious Runoff Depth=4.50" v Length=966' Tc=20.0 min CN=72 Runoff=25.6 cfs 117,618 cf
SubcatchmentPDA-201: Subcat PDA-201	Runoff Area=15,861 sf 17.40% Impervious Runoff Depth=5.19" Flow Length=228' Tc=6.0 min CN=78 Runoff=2.2 cfs 6,857 cf
	Runoff Area=110,630 sf 0.01% Impervious Runoff Depth=4.39" low Length=830' Tc=22.6 min CN=71 Runoff=8.4 cfs 40,460 cf
SubcatchmentRF-02: RF-02	Runoff Area=3,116 sf 100.00% Impervious Runoff Depth=7.54" Tc=0.0 min CN=98 Runoff=0.7 cfs 1,958 cf
SubcatchmentRF-03: RF-03	Runoff Area=1,685 sf 100.00% Impervious Runoff Depth=7.54" Tc=0.0 min CN=98 Runoff=0.4 cfs 1,059 cf
SubcatchmentRF-04: RF-04	Runoff Area=3,116 sf 100.00% Impervious Runoff Depth=7.54" Tc=0.0 min CN=98 Runoff=0.7 cfs 1,958 cf
SubcatchmentRF-05: RF-05	Runoff Area=3,116 sf 100.00% Impervious Runoff Depth=7.54" Tc=0.0 min CN=98 Runoff=0.7 cfs 1,958 cf
SubcatchmentRF-06: RF-06	Runoff Area=3,116 sf 100.00% Impervious Runoff Depth=7.54" Tc=0.0 min CN=98 Runoff=0.7 cfs 1,958 cf
Pond 1P: Pond	Peak Elev=320.71' Storage=338 cf Inflow=16.8 cfs 76,154 cf

85 West Street Northborough JN-1207.03 - Proposed Type III 24-hr 100-year Rainfall=7.78"

Prepared by WDA Design Group Printed 5/3/2021

HydroCAD® 10.10-5a s/n 11557 © 2020 HydroCAD Software Solutions LLC Page 69

Pond INF-103: INF-103 Peak Elev=327.76' Storage=434 cf Inflow=3.7 cfs 11,784 cf Discarded=0.0 cfs 335 cf Primary=3.7 cfs 11,450 cf Outflow=3.7 cfs 11,784 cf Pond INF-104: INF-104 Peak Elev=328.59' Storage=4,012 cf Inflow=10.1 cfs 49,352 cf Discarded=0.1 cfs 9,646 cf Primary=9.7 cfs 39,706 cf Outflow=9.8 cfs 49,352 cf Peak Elev=349.93' Storage=8,379 cf Inflow=7.4 cfs 35,416 cf Pond INF-105: INF-105 Discarded=0.1 cfs 11,427 cf Primary=5.9 cfs 23,989 cf Outflow=6.0 cfs 35,416 cf Peak Elev=357.92' Storage=3,199 cf Inflow=3.6 cfs 12,166 cf Pond INF-106: INF-106 Discarded=0.0 cfs 4,470 cf Primary=2.8 cfs 7,697 cf Outflow=2.8 cfs 12,166 cf Pond INF-201: INF-201 Peak Elev=339.67' Storage=6,918 cf Inflow=9.4 cfs 48,674 cf Discarded=0.2 cfs 12,274 cf Primary=8.5 cfs 36,400 cf Outflow=8.7 cfs 48,674 cf Pond INF-RF2: INF-RF2 Peak Elev=335.94' Storage=133 cf Inflow=0.7 cfs 1,958 cf Discarded=0.0 cfs 601 cf Primary=0.6 cfs 1,357 cf Outflow=0.6 cfs 1,958 cf Pond INF-RF3: INF-RF3 Peak Elev=333.76' Storage=120 cf Inflow=0.4 cfs 1,059 cf Discarded=0.0 cfs 499 cf Primary=0.3 cfs 560 cf Outflow=0.3 cfs 1,059 cf Pond INF-RF4: INF-RF4 Peak Elev=0.00' Storage=0 cf Discarded=0.0 cfs 0 cf Primary=0.0 cfs 0 cf Pond INF-RF5: INF-RF5 Peak Elev=377.94' Storage=133 cf Inflow=0.7 cfs 1,958 cf Discarded=0.0 cfs 601 cf Primary=0.6 cfs 1,357 cf Outflow=0.6 cfs 1,958 cf Peak Elev=377.94' Storage=133 cf Inflow=0.7 cfs 1,958 cf Pond INF-RF6: INF-RF6 Discarded=0.0 cfs 601 cf Primary=0.6 cfs 1,357 cf Outflow=0.6 cfs 1,958 cf Inflow=18.0 cfs 82,108 cf Link DP-1: DESIGN POINT 1 Primary=18.0 cfs 82,108 cf Link DP-2: DESIGN POINT 2 Inflow=33.9 cfs 157.291 cf Primary=33.9 cfs 157,291 cf

> Total Runoff Area = 754,285 sf Runoff Volume = 279,854 cf Average Runoff Depth = 4.45" 89.36% Pervious = 673,994 sf 10.64% Impervious = 80,291 sf

Page 70

HydroCAD® 10.10-5a s/n 11557 © 2020 HydroCAD Software Solutions LLC

Summary for Subcatchment PDA-100: PDA-100

1.2 cfs @ 12.24 hrs, Volume= 5,954 cf, Depth= 1.62" Runoff

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-96.00 hrs, dt= 0.01 hrs Type III 24-hr 100-year Rainfall=7.78"

_	Α	rea (sf)	CN	CN Description					
		2,894	98	Paved park	ing, HSG A	1			
		37,895	39	>75% Ġras	s cover, Go	ood, HSG A			
		395	70	Woods, Go	od, HSG C				
		2,795	74	>75% Gras	s cover, Go	ood, HSG C			
_		88	98	Paved park	ing, HSG D)			
		44,067	45	Weighted A	verage				
		41,085		93.23% Pe	rvious Area	l			
		2,982		6.77% Impe	ervious Are	a			
	Тс	Length	Slope		Capacity	Description			
_	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)				
	11.2	50	0.0256	0.07		Sheet Flow,			
						Woods: Light underbrush n= 0.400 P2= 3.20"			
	3.9	213	0.0170	0.91		Shallow Concentrated Flow,			
_						Short Grass Pasture Kv= 7.0 fps			
	15.1	263	Total						

Summary for Subcatchment PDA-101: PDA-101

0.7 cfs @ 12.09 hrs, Volume= Runoff 2,174 cf, Depth= 3.17"

	Α	rea (sf)	CN	Description		
		5,156	39	>75% Gras	s cover, Go	ood, HSG A
		2,334	98	Paved park	ing, HSG A	1
		235	74	>75% Ġras	s cover, Go	ood, HSG C
		506	98	Paved park	ing, HSG C	
		8,231	60	Weighted A	verage	
		5,391	(65.50% Pei	vious Area	
		2,840	,	34.50% Imp	ervious Ar	ea
	То	Longth	Clana	Valacity	Consoity	Description
	Tc	Length	Slope	•	Capacity	Description
_	(min)	(feet)	(ft/ft)		(cfs)	
	0.4	50	0.0900	2.19		Sheet Flow,
						Smooth surfaces n= 0.011 P2= 3.20"
	0.4	128	0.1076	5.28		Shallow Concentrated Flow,
_						Unpaved Kv= 16.1 fps
	0.8	178	Total.	Increased t	o minimum	Tc = 6.0 min

Page 71

HydroCAD® 10.10-5a s/n 11557 © 2020 HydroCAD Software Solutions LLC

Summary for Subcatchment PDA-102: PDA-102

Runoff = 5.5 cfs @ 12.22 hrs, Volume= 22,825 cf, Depth= 4.28"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-96.00 hrs, dt= 0.01 hrs Type III 24-hr 100-year Rainfall=7.78"

A	rea (sf)	CN E	escription		
	11,117	39 >	75% Gras	s cover, Go	ood, HSG A
	3,051	98 F	aved park	ing, HSG A	\
	19,777	70 V	Voods, Go	od, HSG C	
	25,414	74 >	75% Gras	s cover, Go	ood, HSG C
	2,188	98 F	aved park	ing, HSG C	
	2,272	98 F	Roofs, HSG	S C	
	173	80 >	75% Gras	s cover, Go	ood, HSG D
	66	98 F	Paved park	ing, HSG [)
	64,057	70 V	Veighted A	verage	
	56,481	8	8.17% Per	vious Area	l
	7,576	1	1.83% Imp	pervious Ar	ea
Tc	Length	Slope	Velocity		Description
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
3.1	50	0.0908	0.27		Sheet Flow,
					Grass: Short n= 0.150 P2= 3.20"
8.5	360	0.0200	0.71		Shallow Concentrated Flow,
					Woodland Kv= 5.0 fps
4.2	208	0.0240	0.82	4.10	•
					Bot.W=2.00' D=1.00' Z= 3.0 '/' Top.W=8.00'
					n= 0.200
15.8	618	Total			

Summary for Subcatchment PDA-103: PDA-103

Runoff = 1.3 cfs @ 12.08 hrs, Volume= 4,087 cf, Depth= 6.24"

 Area (sf)	CN	Description
3,753	74	>75% Grass cover, Good, HSG C
4,113	98	Paved parking, HSG C
 0	70	Woods, Good, HSG C
7,866	87	Weighted Average
3,753		47.71% Pervious Area
4,113		52.29% Impervious Area

85 West Street Northborough JN-1207.03 - Proposed Type III 24-hr 100-year Rainfall=7.78"

Prepared by WDA Design Group

Printed 5/3/2021

Page 72

HydroCAD® 10.10-5a s/n 11557 © 2020 HydroCAD Software Solutions LLC

 Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
0.3	36	0.0611	1.75		Sheet Flow,
					Smooth surfaces n= 0.011 P2= 3.20"
0.4	188	0.0189	8.17	14.44	Pipe Channel,
					18.0" Round Area= 1.8 sf Perim= 4.7' r= 0.38'
					n= 0.013
0.2	132	0.0902	10.59	52.95	Trap/Vee/Rect Channel Flow,
					Bot.W=2.00' D=1.00' Z= 3.0 '/' Top.W=8.00'
					n= 0.030 Short grass
0.9	356	Total, li	ncreased t	o minimum	Tc = 6.0 min

Summary for Subcatchment PDA-104: PDA-104

Runoff = 5.4 cfs @ 12.23 hrs, Volume= 23,405 cf, Depth= 4.62"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-96.00 hrs, dt= 0.01 hrs Type III 24-hr 100-year Rainfall=7.78"

	Α	rea (sf)	CN E	escription		
		19,407	74 >	75% Gras	s cover, Go	ood, HSG C
		38,640	70 V	Voods, Go	od, HSG C	
_		2,804	98 F	aved park	ing, HSG C	
		60,851	73 V	Veighted A	verage	
		58,047	9	5.39% Pei	rvious Area	
		2,804	4	.61% Impe	ervious Are	a
	Тс	Length	Slope	•	Capacity	Description
_	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
	10.2	50	0.0324	0.08		Sheet Flow,
						Woods: Light underbrush n= 0.400 P2= 3.20"
	4.3	335	0.0689	1.31		Shallow Concentrated Flow,
						Woodland Kv= 5.0 fps
	1.1	151	0.1167	2.39		Shallow Concentrated Flow,
	4.0	404	0.0700	4.05		Short Grass Pasture Kv= 7.0 fps
	1.6	131	0.0730	1.35		Shallow Concentrated Flow,
	0.0	000	0.4000	44.40	2.00	Woodland Kv= 5.0 fps
	0.3	222	0.1039	11.16	3.90	•
						8.0" Round Area= 0.3 sf Perim= 2.1' r= 0.17' n= 0.013
_	47.5	000	T ()			11- 0.013
	17.5	889	Total			

Summary for Subcatchment PDA-105: PDA-105

Runoff = 7.4 cfs @ 12.30 hrs, Volume= 35,416 cf, Depth= 4.62"

85 West Street Northborough JN-1207.03 - ProposedType III 24-hr 100-year Rainfall=7.78"

Prepared by WDA Design Group
HydroCAD® 10.10-5a s/n 11557 © 2020 HydroCAD Software Solutions LLC

Printed 5/3/2021 Page 73

A	rea (sf)	CN E	Description		
	65,985	70 V	Voods, Go	od, HSG C	
	8,422	98 F	aved park	ing, HSG C	
	17,673				ood, HSG C
	92,080	73 V	Veighted A	verage	
	83,658			vious Area	
	8,422	g	.15% Impe	ervious Are	a
	•		•		
Tc	Length	Slope	Velocity	Capacity	Description
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
13.0	50	0.0176	0.06		Sheet Flow,
					Woods: Light underbrush n= 0.400 P2= 3.20"
5.0	347	0.0528	1.15		Shallow Concentrated Flow,
					Woodland Kv= 5.0 fps
0.1	30	0.3300	4.02		Shallow Concentrated Flow,
					Short Grass Pasture Kv= 7.0 fps
0.8	208	0.0684	4.21		Shallow Concentrated Flow,
					Unpaved Kv= 16.1 fps
2.8	162	0.0333	0.97	4.83	• •
					Bot.W=2.00' D=1.00' Z= 3.0 '/' Top.W=8.00'
					n= 0.200
21.7	797	Total			

Summary for Subcatchment PDA-106: PDA-106

Runoff = 3.6 cfs @ 12.10 hrs, Volume= 12,166 cf, Depth= 6.35"

A	rea (sf)	CN E	Description			
	9,097	74 >	75% Gras	s cover, Go	ood, HSG C	
	13,120	98 F	Paved parking, HSG C			
	763	70 V	Voods, Go	od, HSG C		
	22,980	88 V	Veighted A	verage		
	9,860	4	2.91% Pei	rvious Area		
	13,120	5	57.09% lmp	pervious Ar	ea	
Tc	Length	Slope	Velocity	Capacity	Description	
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)		
7.2	489	0.0460	1.13	5.67	Trap/Vee/Rect Channel Flow,	
					Bot.W=2.00' D=1.00' Z= 3.0 '/' Top.W=8.00'	
					n= 0.200	

Page 74

HydroCAD® 10.10-5a s/n 11557 © 2020 HydroCAD Software Solutions LLC

Summary for Subcatchment PDA-200: PDA-200

Runoff = 25.6 cfs @ 12.28 hrs, Volume= 117,618 cf, Depth= 4.50"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-96.00 hrs, dt= 0.01 hrs Type III 24-hr 100-year Rainfall=7.78"

A	rea (sf)	CN D	escription				
	25,377	55 V	Voods, Go	od, HSG B			
	36,942	74 >					
1	91,740	70 V	Voods, Go	od, HSG C			
	3,065				ood, HSG A		
	295		Roofs, HSG				
	3,073			ing, HSG C			
	277			ing, HSG A			
	266			ing, HSG D			
	11,813			ace, HSG C			
	5,791			ace, HSG D			
	25,648			od, HSG D	- 1 1100 B		
	9,226				ood, HSG D		
	13,513		Veighted A				
	91,998	_	-	vious Area			
	21,515	6	.86% impe	ervious Area	a		
Tc	Length	Slope	Velocity	Capacity	Description		
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	Becompach		
10.5	50	0.0296	0.08	()	Sheet Flow,		
10.0	00	0.0200	0.00		Woods: Light underbrush n= 0.400 P2= 3.20"		
3.4	247	0.0587	1.21		Shallow Concentrated Flow,		
					Woodland Kv= 5.0 fps		
2.6	248	0.0524	1.60		Shallow Concentrated Flow,		
					Short Grass Pasture Kv= 7.0 fps		
1.8	207	0.1498	1.94		Shallow Concentrated Flow,		
					Woodland Kv= 5.0 fps		
0.4	87	0.0274	3.36		Shallow Concentrated Flow,		
					Paved Kv= 20.3 fps		
0.1	16	0.3333	4.04		Shallow Concentrated Flow,		
4.5		0.000:	4 = 5		Short Grass Pasture Kv= 7.0 fps		
1.2	111	0.0901	1.50		Shallow Concentrated Flow,		
20.0	966	Total			Woodland Kv= 5.0 fps		

Summary for Subcatchment PDA-201: Subcat PDA-201

Runoff = 2.2 cfs @ 12.09 hrs, Volume= 6,857 cf, Depth= 5.19"

85 West Street Northborough JN-1207.03 - ProposedType III 24-hr 100-year Rainfall=7.78"

Prepared by WDA Design Group

Printed 5/3/2021

HydroCAD® 10.10-5a s/n 11557 © 2020 HydroCAD Software Solutions LLC

Page	75
------	----

 Α	rea (sf)	CN D	escription			
	12,163	74 >	75% Gras	s cover, Go	ood, HSG C	
	938	70 V	Voods, Go	od, HSG C		
	2,760	98 P	aved park	ing, HSG C		
	15,861	78 V	Veighted A	verage		
	13,101	8	2.60% Per	vious Area		
	2,760	17.40% Impervious Area				
Тс	Length	Slope	Velocity	Capacity	Description	
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)		
0.5	31	0.0200	1.09		Sheet Flow,	
					Smooth surfaces n= 0.011 P2= 3.20"	
0.3	197	0.0609	13.05	65.26	Trap/Vee/Rect Channel Flow,	
					Bot.W=2.00' D=1.00' Z= 3.0 '/' Top.W=8.00'	
					n= 0.020	
8.0	228	Total, I	ncreased t	o minimum	Tc = 6.0 min	

Summary for Subcatchment PDA-202: Subcat PDA-202

Runoff = 8.4 cfs @ 12.31 hrs, Volume= 40,460 cf, Depth= 4.39"

	Α	rea (sf)	CN E	Description					
		41,066	74 >	>75% Grass cover, Good, HSG C					
	10			Paved parking, HSG C					
		69,554	70 V	Woods, Good, HSG C					
	1	10,630	71 V	Weighted Average					
	1	10,620	9	9.99% Pei	rvious Area				
		10	0	.01% Impe	ervious Are	a			
	Тс	Length	Slope	Velocity	Capacity	Description			
	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)				
	11.3	50	0.0250	0.07		Sheet Flow,			
						Woods: Light underbrush n= 0.400 P2= 3.20"			
	9.2	308	0.0500	0.56		Shallow Concentrated Flow,			
						Forest w/Heavy Litter Kv= 2.5 fps			
	1.7	169	0.0592	1.70		Shallow Concentrated Flow,			
						Short Grass Pasture Kv= 7.0 fps			
	0.4	303	0.0460	11.34	56.72	Trap/Vee/Rect Channel Flow,			
						Bot.W=2.00' D=1.00' Z= 3.0 '/' Top.W=8.00'			
_						n= 0.020			
	22.6	830	Total						

85 West Street Northborough JN-1207.03 - Proposed Type III 24-hr 100-year Rainfall=7.78"

Prepared by WDA Design Group

Printed 5/3/2021

Page 76

HydroCAD® 10.10-5a s/n 11557 © 2020 HydroCAD Software Solutions LLC

Summary for Subcatchment RF-02: RF-02

Runoff = 0.7 cfs @ 12.00 hrs, Volume= 1,958 cf, Depth= 7.54"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-96.00 hrs, dt= 0.01 hrs Type III 24-hr 100-year Rainfall=7.78"

 Area (sf)	CN	Description
3,116	98	Roofs, HSG C
3,116		100.00% Impervious Area

Summary for Subcatchment RF-03: RF-03

Runoff = 0.4 cfs @ 12.00 hrs, Volume= 1,059 cf, Depth= 7.54"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-96.00 hrs, dt= 0.01 hrs Type III 24-hr 100-year Rainfall=7.78"

	Area (sf)	CN	Description
	1,685	98	Roofs, HSG C
·	1,685		100.00% Impervious Area

Summary for Subcatchment RF-04: RF-04

Runoff = 0.7 cfs @ 12.00 hrs, Volume= 1,958 cf, Depth= 7.54"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-96.00 hrs, dt= 0.01 hrs Type III 24-hr 100-year Rainfall=7.78"

 Area (sf)	CN	Description
3,116	98	Roofs, HSG C
 3.116		100.00% Impervious Area

Summary for Subcatchment RF-05: RF-05

Runoff = 0.7 cfs @ 12.00 hrs, Volume= 1,958 cf, Depth= 7.54"

 Area (sf)	CN	Description
3,116	98	Roofs, HSG C
 3,116		100.00% Impervious Area

HydroCAD® 10.10-5a s/n 11557 © 2020 HydroCAD Software Solutions LLC

Page 77

Summary for Subcatchment RF-06: RF-06

Runoff = 0.7 cfs @ 12.00 hrs, Volume= 1,958 cf, Depth= 7.54"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-96.00 hrs, dt= 0.01 hrs Type III 24-hr 100-year Rainfall=7.78"

 Area (sf)	CN	Description
3,116	98	Roofs, HSG C
 3.116		100.00% Impervious Area

Summary for Pond 1P: Pond

Inflow Area = 259,181 sf, 16.20% Impervious, Inflow Depth = 3.53" for 100-year event Inflow = 16.8 cfs @ 12.30 hrs, Volume= 76,154 cf
Outflow = 16.8 cfs @ 12.30 hrs, Volume= 76,154 cf, Atten= 0%, Lag= 0.3 min Primary = 16.8 cfs @ 12.30 hrs, Volume= 76,154 cf

Routing by Dyn-Stor-Ind method, Time Span= 0.00-96.00 hrs, dt= 0.01 hrs / 2 Peak Elev= 320.71' @ 12.30 hrs Surf.Area= 678 sf Storage= 338 cf

Plug-Flow detention time= 0.7 min calculated for 76,154 cf (100% of inflow) Center-of-Mass det. time= 0.5 min (821.0 - 820.5)

Volume	Inve	ert Avail.Sto	rage Storage	Description		
#1 320.00' 1,89		92 cf Custon	n Stage Data (P	rismatic)Listed below (Recalc)		
Elevation (feet)		Surf.Area (sq-ft)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)		
320.0		269	0	0		
321.00		841	555	555		
322.0	00	1,833	1,337	1,892		
Device	Routing	Invert	Outlet Device	es		
#1	Primary	320.20'	8.0" Round			
#2	Primary	320.00'	Head (feet) 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 1.80 2.00			
			2.50 3.00 3.50 4.00 4.50 5.00 5.50 Coef. (English) 2.43 2.54 2.70 2.69 2.68 2.68 2.66 2.64 2.64			

2.64 2.65 2.65 2.66 2.66 2.68 2.70 2.74

Primary OutFlow Max=16.8 cfs @ 12.30 hrs HW=320.71' TW=0.00' (Dynamic Tailwater)

-1=Culvert (Inlet Controls 0.6 cfs @ 1.93 fps)

-2=Broad-Crested Rectangular Weir (Weir Controls 16.3 cfs @ 2.28 fps)

85 West Street Northborough JN-1207.03 - Proposed Type III 24-hr 100-year Rainfall=7.78"

Prepared by WDA Design Group

Printed 5/3/2021

Page 78

HydroCAD® 10.10-5a s/n 11557 © 2020 HydroCAD Software Solutions LLC

Summary for Pond INF-103: INF-103

Inflow Area =	30,846 sf, 55.87%	Impervious, I	Inflow Depth = 4.58"	for 100-year event
Inflow =	3.7 cfs @ 12.13 hr	s, Volume=	11,784 cf	·
Outflow =	3.7 cfs @ 12.15 hr	s, Volume=	11,784 cf, Atte	en= 2%, Lag= 1.7 min
Discarded =	0.0 cfs @ 5.59 hr	s, Volume=	335 cf	
Primary =	3.7 cfs @ 12.15 hr	s, Volume=	11,450 cf	

Routing by Dyn-Stor-Ind method, Time Span= 0.00-96.00 hrs, dt= 0.01 hrs / 2 Peak Elev= 327.76' @ 12.15 hrs Surf.Area= 473 sf Storage= 434 cf

Plug-Flow detention time= 15.9 min calculated for 11,783 cf (100% of inflow) Center-of-Mass det. time= 16.0 min (813.1 - 797.1)

Volume	Invert	Avail.Storage	Storage Description	
#1A	326.00'	310 cf	12.42'W x 38.07'L x 2.00'H Field A	
			945 cf Overall - 171 cf Embedded = 774 cf x 40.0% Voids	
#2A	326.50'	171 cf	ADS_StormTech SC-160LP +Capx 25 Inside #1	
			Effective Size= 18.0"W x 12.0"H => 0.96 sf x 7.12'L = 6.8 cf	
			Overall Size= 25.0"W x 12.0"H x 7.56'L with 0.44' Overlap	
			25 Chambers in 5 Rows	
		481 cf	Total Available Storage	

Storage Group A created with Chamber Wizard

Device	Routing	Invert	Outlet Devices
#1	Primary	326.56'	6.0" Vert. Orifice/Grate X 4.00 C= 0.600
			Limited to weir flow at low heads
#2	Discarded	326.00'	0.276 in/hr Exfiltration - Loamy Sand over Surface area
			Phase-In= 0.01'

Discarded OutFlow Max=0.0 cfs @ 5.59 hrs HW=326.02' (Free Discharge) **2=Exfiltration - Loamy Sand** (Exfiltration Controls 0.0 cfs)

Primary OutFlow Max=3.7 cfs @ 12.15 hrs HW=327.75' TW=320.61' (Dynamic Tailwater) 1=Orifice/Grate (Orifice Controls 3.7 cfs @ 4.68 fps)

Summary for Pond INF-104: INF-104

Inflow Area =	156,047 sf,	9.19% Impervious,	Inflow Depth = 3.80" for 100-year event
Inflow =	10.1 cfs @	12.35 hrs, Volume=	49,352 cf
Outflow =	9.8 cfs @	12.41 hrs, Volume=	49,352 cf, Atten= 2%, Lag= 4.1 min
Discarded =	0.1 cfs @	10.04 hrs, Volume=	9,646 cf
Primary =	9.7 cfs @	12.41 hrs, Volume=	39,706 cf

Routing by Dyn-Stor-Ind method, Time Span= 0.00-96.00 hrs, dt= 0.01 hrs / 2 Peak Elev= 328.59' @ 12.41 hrs Surf.Area= 1,889 sf Storage= 4,012 cf

Plug-Flow detention time= 41.6 min calculated for 49,347 cf (100% of inflow) Center-of-Mass det. time= 41.6 min (871.2 - 829.6)

HydroCAD® 10.10-5a s/n 11557 © 2020 HydroCAD Software Solutions LLC

Volume	Invert	Avail.Storage	Storage Description
#1A	325.10'	1,726 cf	25.25'W x 74.82'L x 3.50'H Field A
			6,612 cf Overall - 2,297 cf Embedded = 4,315 cf x 40.0% Voids
#2A	325.60'	2,297 cf	ADS_StormTech SC-740 +Cap x 50 Inside #1
			Effective Size= 44.6"W x 30.0"H => 6.45 sf x 7.12'L = 45.9 cf
			Overall Size= 51.0"W x 30.0"H x 7.56'L with 0.44' Overlap
			50 Chambers in 5 Rows
		4.000	Tatal Assallable Ottomore

4,023 cf Total Available Storage

Storage Group A created with Chamber Wizard

Device	Routing	Invert	Outlet Devices		
#1	Primary	327.14'	6.0" Vert. Orifice/Grate X 2.00 C= 0.600		
	•		Limited to weir flow at low heads		
#2	Primary	326.81'	10.0" Vert. Orifice/Grate C= 0.600 Limited to weir flow at low heads		
#3	Primary	326.64'	12.0" Vert. Orifice/Grate C= 0.600 Limited to weir flow at low heads		
#4	Discarded	325.10'	3.072 in/hr Exfiltration - Loamy Sand over Surface area		
			Phase-In= 0.01'		

Discarded OutFlow Max=0.1 cfs @ 10.04 hrs HW=325.14' (Free Discharge) **4=Exfiltration - Loamy Sand** (Exfiltration Controls 0.1 cfs)

Primary OutFlow Max=9.7 cfs @ 12.41 hrs HW=328.59' TW=320.68' (Dynamic Tailwater)

1=Orifice/Grate (Orifice Controls 2.1 cfs @ 5.26 fps)

2=Orifice/Grate (Orifice Controls 3.1 cfs @ 5.61 fps)

-3=Orifice/Grate (Orifice Controls 4.5 cfs @ 5.79 fps)

Summary for Pond INF-105: INF-105

Inflow Area =	92,080 sf,	9.15% Impervious,	Inflow Depth = 4.62" for 100-year event
Inflow =	7.4 cfs @	12.30 hrs, Volume=	35,416 cf
Outflow =	6.0 cfs @	12.46 hrs, Volume=	35,416 cf, Atten= 20%, Lag= 9.7 min
Discarded =	0.1 cfs @	9.80 hrs, Volume=	11,427 cf
Primary =	5.9 cfs @	12.46 hrs, Volume=	23,989 cf

Routing by Dyn-Stor-Ind method, Time Span= 0.00-96.00 hrs, dt= 0.01 hrs / 2 Peak Elev= 349.93' @ 12.46 hrs Surf.Area= 3,941 sf Storage= 8,379 cf

Plug-Flow detention time= 162.5 min calculated for 35,413 cf (100% of inflow) Center-of-Mass det. time= 162.5 min (996.7 - 834.2)

Volume	Invert	Avail.Storage	Storage Description
#1A	346.50'	3,532 cf	44.25'W x 89.06'L x 3.50'H Field A
			13,793 cf Overall - 4,962 cf Embedded = 8,831 cf x 40.0% Voids
#2A	347.00'	4,962 cf	ADS_StormTech SC-740 +Cap x 108 Inside #1
			Effective Size= 44.6"W x 30.0"H => 6.45 sf x 7.12'L = 45.9 cf
			Overall Size= 51.0"W x 30.0"H x 7.56'L with 0.44' Overlap
			108 Chambers in 9 Rows
		0.404.5	Tatal Assallable Ottomore

8,494 cf Total Available Storage

HydroCAD® 10.10-5a s/n 11557 © 2020 HydroCAD Software Solutions LLC

Storage Group A created with Chamber Wizard

Device	Routing	Invert	Outlet Devices
#1	Primary	348.54'	6.0" Vert. Orifice/Grate C= 0.600 Limited to weir flow at low heads
#2	Primary	348.38'	8.0" Vert. Orifice/Grate C= 0.600 Limited to weir flow at low heads
#3	Primary	348.21'	10.0" Vert. Orifice/Grate C= 0.600 Limited to weir flow at low heads
#4	Discarded	346.50'	1.284 in/hr Exfiltration - Sandy Loam over Surface area
			Phase-In= 0.01'

Discarded OutFlow Max=0.1 cfs @ 9.80 hrs HW=346.54' (Free Discharge) **4=Exfiltration - Sandy Loam** (Exfiltration Controls 0.1 cfs)

Primary OutFlow Max=5.9 cfs @ 12.46 hrs HW=349.93' TW=328.56' (Dynamic Tailwater)

1=Orifice/Grate (Orifice Controls 1.0 cfs @ 5.13 fps)

-2=Orifice/Grate (Orifice Controls 1.9 cfs @ 5.30 fps)

-3=Orifice/Grate (Orifice Controls 3.0 cfs @ 5.49 fps)

Summary for Pond INF-106: INF-106

Inflow Area =	22,980 sf,	57.09% Impervious,	Inflow Depth = 6.35" for 100-year event
Inflow =	3.6 cfs @ '	12.10 hrs, Volume=	12,166 cf
Outflow =	2.8 cfs @ '	12.17 hrs, Volume=	12,166 cf, Atten= 22%, Lag= 4.2 min
Discarded =	0.0 cfs @	7.59 hrs, Volume=	4,470 cf
Primary =	2.8 cfs @	12.17 hrs, Volume=	7,697 cf

Routing by Dyn-Stor-Ind method, Time Span= 0.00-96.00 hrs, dt= 0.01 hrs / 2 Peak Elev= 357.92' @ 12.17 hrs Surf.Area= 786 sf Storage= 3,199 cf

Plug-Flow detention time= 271.0 min calculated for 12,165 cf (100% of inflow) Center-of-Mass det. time= 271.1 min (1,055.1 - 784.1)

Volume	Invert	Avail.Storage	Storage Description
#1A	351.25'	1,389 cf	28.50'W x 27.59'L x 6.75'H Field A
			5,308 cf Overall - 1,834 cf Embedded = 3,474 cf x 40.0% Voids
#2A	352.00'	1,834 cf	ADS_StormTech MC-4500 b +Capx 15 Inside #1
			Effective Size= 90.4"W x 60.0"H => 26.46 sf x 4.03'L = 106.5 cf
			Overall Size= 100.0"W x 60.0"H x 4.33'L with 0.31' Overlap
			15 Chambers in 3 Rows
			Cap Storage= +39.5 cf x 2 x 3 rows = 237.0 cf
		3,224 cf	Total Available Storage

Storage Group A created with Chamber Wizard

Device	Routing	Invert	Outlet Devices
#1	Primary	355.55'	6.0" Vert. Orifice/Grate X 2.00 C= 0.600
			Limited to weir flow at low heads
#2	Discarded	351.25'	1.758 in/hr Exfiltration - Sandy Loam over Surface area
			Phase-In= 0.01'

Page 81

HydroCAD® 10.10-5a s/n 11557 © 2020 HydroCAD Software Solutions LLC

Discarded OutFlow Max=0.0 cfs @ 7.59 hrs HW=351.32' (Free Discharge) **2=Exfiltration - Sandy Loam** (Exfiltration Controls 0.0 cfs)

Primary OutFlow Max=2.8 cfs @ 12.17 hrs HW=357.92' TW=327.75' (Dynamic Tailwater) 1=Orifice/Grate (Orifice Controls 2.8 cfs @ 7.01 fps)

Summary for Pond INF-201: INF-201

Inflow Area =	129,607 sf,	4.54% Impervious,	Inflow Depth = 4.51" for 100-year event
Inflow =	9.4 cfs @	12.30 hrs, Volume=	48,674 cf
Outflow =	8.7 cfs @	12.40 hrs, Volume=	48,674 cf, Atten= 8%, Lag= 6.0 min
Discarded =	0.2 cfs @	9.76 hrs, Volume=	12,274 cf
Primary =	8.5 cfs @	12.40 hrs, Volume=	36,400 cf

Routing by Dyn-Stor-Ind method, Time Span= 0.00-96.00 hrs, dt= 0.01 hrs / 2 Peak Elev= 339.67' @ 12.40 hrs Surf.Area= 3,236 sf Storage= 6,918 cf

Plug-Flow detention time= 63.3 min calculated for 48,669 cf (100% of inflow) Center-of-Mass det. time= 63.3 min (895.6 - 832.3)

Volume	Invert	Avail.Storage	Storage Description
#1A	336.20'	2,914 cf	39.50'W x 81.94'L x 3.50'H Field A
			11,328 cf Overall - 4,043 cf Embedded = 7,285 cf x 40.0% Voids
#2A	336.70'	4,043 cf	ADS_StormTech SC-740 +Cap x 88 Inside #1
			Effective Size= 44.6"W x 30.0"H => 6.45 sf x 7.12'L = 45.9 cf
			Overall Size= 51.0"W x 30.0"H x 7.56'L with 0.44' Overlap
			88 Chambers in 8 Rows
•		6,957 cf	Total Available Storage

Storage Group A created with Chamber Wizard

Device	Routing	Invert	Outlet Devices
#1	Primary	337.45'	15.0" Vert. Orifice/Grate C= 0.600 Limited to weir flow at low heads
#2	Primary	338.24'	6.0" Vert. Orifice/Grate C= 0.600 Limited to weir flow at low heads
#3	Discarded	336.20'	2.262 in/hr Exfiltration - Sandy Loam over Surface area
			Phase-In= 0.01'

Discarded OutFlow Max=0.2 cfs @ 9.76 hrs HW=336.24' (Free Discharge) **3=Exfiltration - Sandy Loam** (Exfiltration Controls 0.2 cfs)

Primary OutFlow Max=8.5 cfs @ 12.40 hrs HW=339.67' TW=0.00' (Dynamic Tailwater)
—1=Orifice/Grate (Orifice Controls 7.5 cfs @ 6.08 fps)
—2=Orifice/Grate (Orifice Controls 1.0 cfs @ 5.23 fps)

Page 82

HydroCAD® 10.10-5a s/n 11557 © 2020 HydroCAD Software Solutions LLC

Summary for Pond INF-RF2: INF-RF2

Inflow Area =	3,116 sf,100.00% Impervious,	Inflow Depth = 7.54" for 100-year event
Inflow =	0.7 cfs @ 12.00 hrs, Volume=	1,958 cf
Outflow =	0.6 cfs @ 12.01 hrs, Volume=	1,958 cf, Atten= 4%, Lag= 0.6 min
Discarded =	0.0 cfs @ 5.21 hrs, Volume=	601 cf
Primary =	0.6 cfs @ 12.01 hrs, Volume=	1,357 cf

Routing by Dyn-Stor-Ind method, Time Span= 0.00-96.00 hrs, dt= 0.01 hrs / 2 Peak Elev= 335.94' @ 12.01 hrs Surf.Area= 118 sf Storage= 133 cf

Plug-Flow detention time= 51.4 min calculated for 1,958 cf (100% of inflow) Center-of-Mass det. time= 51.4 min (787.4 - 736.0)

Volume	Invert	Avail.Storage	Storage Description
#1A	334.00'	129 cf	11.00'W x 10.74'L x 3.50'H Field A
			413 cf Overall - 92 cf Embedded = 321 cf x 40.0% Voids
#2A	334.50'	92 cf	ADS_StormTech SC-740 +Cap x 2 Inside #1
			Effective Size= 44.6"W x 30.0"H => 6.45 sf x 7.12'L = 45.9 cf
			Overall Size= 51.0"W x 30.0"H x 7.56'L with 0.44' Overlap
			2 Chambers in 2 Rows
		220 cf	Total Available Storage

Storage Group A created with Chamber Wizard

Device	Routing	Invert	Outlet Devices
#1	Discarded	334.00'	2.410 in/hr Exfiltration over Surface area Phase-In= 0.01'
#2	Primary	335.38'	8.0" Round Culvert
	•		L= 52.0' CMP, projecting, no headwall, Ke= 0.900
			Inlet / Outlet Invert= 335.38' / 333.00' S= 0.0458 '/' Cc= 0.900
			n= 0.013, Flow Area= 0.35 sf

Discarded OutFlow Max=0.0 cfs @ 5.21 hrs HW=334.04' (Free Discharge) **1=Exfiltration** (Exfiltration Controls 0.0 cfs)

Primary OutFlow Max=0.6 cfs @ 12.01 hrs HW=335.94' TW=0.00' (Dynamic Tailwater) 2=Culvert (Inlet Controls 0.6 cfs @ 2.01 fps)

Summary for Pond INF-RF3: INF-RF3

Inflow Area =	1,685 sf,100.00% Impervious,	Inflow Depth = 7.54" for 100-year event
Inflow =	0.4 cfs @ 12.00 hrs, Volume=	1,059 cf
Outflow =	0.3 cfs @ 12.01 hrs, Volume=	1,059 cf, Atten= 5%, Lag= 0.7 min
Discarded =	0.0 cfs @ 8.01 hrs, Volume=	499 cf
Primary =	0.3 cfs @ 12.01 hrs, Volume=	560 cf

Routing by Dyn-Stor-Ind method, Time Span= 0.00-96.00 hrs, dt= 0.01 hrs / 2 Peak Elev= 333.76' @ 12.01 hrs Surf.Area= 118 sf Storage= 120 cf

Plug-Flow detention time= 64.2 min calculated for 1,059 cf (100% of inflow)

85 West Street Northborough JN-1207.03 - ProposedType III 24-hr 100-year Rainfall=7.78"

Prepared by WDA Design Group

Printed 5/3/2021

Page 83

HydroCAD® 10.10-5a s/n 11557 © 2020 HydroCAD Software Solutions LLC

Center-of-Mass det. time= 64.2 min (800.2 - 736.0)

Volume	Invert	Avail.Storage	Storage Description
#1A	332.00'	129 cf	11.00'W x 10.74'L x 3.50'H Field A
			413 cf Overall - 92 cf Embedded = 321 cf x 40.0% Voids
#2A	332.50'	92 cf	ADS_StormTech SC-740 +Capx 2 Inside #1
			Effective Size= 44.6"W x 30.0"H => 6.45 sf x 7.12'L = 45.9 cf
			Overall Size= 51.0"W x 30.0"H x 7.56'L with 0.44' Overlap
			2 Chambers in 2 Rows
		202	T

220 cf Total Available Storage

Storage Group A created with Chamber Wizard

Device	Routing	Invert	Outlet Devices
#1	Discarded	332.00'	2.410 in/hr Exfiltration over Surface area Phase-In= 0.01'
#2	Primary	333.38'	8.0" Round Culvert
	-		L= 57.0' CMP, projecting, no headwall, Ke= 0.900
			Inlet / Outlet Invert= 333.38' / 331.00' S= 0.0418 '/' Cc= 0.900
			n= 0.013, Flow Area= 0.35 sf

Discarded OutFlow Max=0.0 cfs @ 8.01 hrs HW=332.04' (Free Discharge) **1=Exfiltration** (Exfiltration Controls 0.0 cfs)

Primary OutFlow Max=0.3 cfs @ 12.01 hrs HW=333.76' TW=0.00' (Dynamic Tailwater) 2=Culvert (Inlet Controls 0.3 cfs @ 1.65 fps)

Summary for Pond INF-RF4: INF-RF4

Volume	Invert	Avail.Storage	Storage Description
#1A	366.00'	129 cf	11.00'W x 10.74'L x 3.50'H Field A
			413 cf Overall - 92 cf Embedded = 321 cf x 40.0% Voids
#2A	366.50'	92 cf	ADS_StormTech SC-740 +Cap x 2 Inside #1
			Effective Size= 44.6"W x 30.0"H => 6.45 sf x 7.12'L = 45.9 cf
			Overall Size= 51.0"W x 30.0"H x 7.56'L with 0.44' Overlap
			2 Chambers in 2 Rows
		220 cf	Total Available Storage

Storage Group A created with Chamber Wizard

Device	Routing	Invert	Outlet Devices
#1	Discarded	366.00'	2.410 in/hr Exfiltration over Surface area Phase-In= 0.01'
#2	Primary	367.38'	8.0" Round Culvert
			L= 37.0' CMP, projecting, no headwall, Ke= 0.900
			Inlet / Outlet Invert= 367.38' / 366.00' S= 0.0373 '/' Cc= 0.900
			n= 0.013. Flow Area= 0.35 sf

85 West Street Northborough JN-1207.03 - Proposed Type III 24-hr 100-year Rainfall=7.78"

Prepared by WDA Design Group

Printed 5/3/2021

Page 84

HydroCAD® 10.10-5a s/n 11557 © 2020 HydroCAD Software Solutions LLC

Discarded OutFlow Max=0.0 cfs @ 0.00 hrs HW=0.00' (Free Discharge)

1=Exfiltration (Controls 0.0 cfs)

Primary OutFlow Max=0.0 cfs @ 0.00 hrs HW=0.00' (Free Discharge) 2=Culvert (Controls 0.0 cfs)

Summary for Pond INF-RF5: INF-RF5

Inflow Area =	3,116 sf,100.00% Impervious,	Inflow Depth = 7.54" for 100-year event
Inflow =	0.7 cfs @ 12.00 hrs, Volume=	1,958 cf
Outflow =	0.6 cfs @ 12.01 hrs, Volume=	1,958 cf, Atten= 4%, Lag= 0.6 min
Discarded =	0.0 cfs @ 5.21 hrs, Volume=	601 cf
Primary =	0.6 cfs @ 12.01 hrs, Volume=	1,357 cf

Routing by Dyn-Stor-Ind method, Time Span= 0.00-96.00 hrs, dt= 0.01 hrs / 2 Peak Elev= 377.94' @ 12.01 hrs Surf.Area= 118 sf Storage= 133 cf

Plug-Flow detention time= 51.4 min calculated for 1,958 cf (100% of inflow) Center-of-Mass det. time= 51.4 min (787.4 - 736.0)

Volume	Invert	Avail.Storage	Storage Description
#1A	376.00'	129 cf	11.00'W x 10.74'L x 3.50'H Field A
			413 cf Overall - 92 cf Embedded = 321 cf x 40.0% Voids
#2A	376.50'	92 cf	ADS_StormTech SC-740 +Cap x 2 Inside #1
			Effective Size= 44.6"W x 30.0"H => 6.45 sf x 7.12'L = 45.9 cf
			Overall Size= 51.0"W x 30.0"H x 7.56'L with 0.44' Overlap
			2 Chambers in 2 Rows
		220 cf	Total Available Storage

Storage Group A created with Chamber Wizard

Device	Routing	Invert	Outlet Devices
#1	Primary	377.38'	8.0" Round Culvert
	·		L= 16.0' CMP, projecting, no headwall, Ke= 0.900 Inlet / Outlet Invert= 377.38' / 376.00' S= 0.0862 '/' Cc= 0.900 n= 0.013, Flow Area= 0.35 sf
#2	Discarded	376.00'	2.410 in/hr Exfiltration over Surface area Phase-In= 0.01'

Discarded OutFlow Max=0.0 cfs @ 5.21 hrs HW=376.04' (Free Discharge) **2=Exfiltration** (Exfiltration Controls 0.0 cfs)

Primary OutFlow Max=0.6 cfs @ 12.01 hrs HW=377.94' TW=338.28' (Dynamic Tailwater) 1=Culvert (Inlet Controls 0.6 cfs @ 2.01 fps)

Printed 5/3/2021

HydroCAD® 10.10-5a s/n 11557 © 2020 HydroCAD Software Solutions LLC

Page 85

Summary for Pond INF-RF6: INF-RF6

Inflow Area =	3,116 sf,100.00% Impervious,	Inflow Depth = 7.54" for 100-year event
Inflow =	0.7 cfs @ 12.00 hrs, Volume=	1,958 cf
Outflow =	0.6 cfs @ 12.01 hrs, Volume=	1,958 cf, Atten= 4%, Lag= 0.6 min
Discarded =	0.0 cfs @ 5.21 hrs, Volume=	601 cf
Primary =	0.6 cfs @ 12.01 hrs, Volume=	1,357 cf

Routing by Dyn-Stor-Ind method, Time Span= 0.00-96.00 hrs, dt= 0.01 hrs / 2 Peak Elev= 377.94' @ 12.01 hrs Surf.Area= 118 sf Storage= 133 cf

Plug-Flow detention time= 51.4 min calculated for 1,958 cf (100% of inflow) Center-of-Mass det. time= 51.4 min (787.4 - 736.0)

Volume	Invert	Avail.Storage	Storage Description
#1A	376.00'	129 cf	11.00'W x 10.74'L x 3.50'H Field A
			413 cf Overall - 92 cf Embedded = 321 cf x 40.0% Voids
#2A	376.50'	92 cf	ADS_StormTech SC-740 +Cap x 2 Inside #1
			Effective Size= 44.6"W x 30.0"H => 6.45 sf x 7.12'L = 45.9 cf
			Overall Size= 51.0"W x 30.0"H x 7.56'L with 0.44' Overlap
			2 Chambers in 2 Rows
	•	220 cf	Total Available Storage

Storage Group A created with Chamber Wizard

Device	Routing	Invert	Outlet Devices
#1	Primary	377.38'	8.0" Round Culvert
	•		L= 58.0' CMP, projecting, no headwall, Ke= 0.900
			Inlet / Outlet Invert= 377.38' / 376.00' S= 0.0238 '/' Cc= 0.900
			n= 0.013, Flow Area= 0.35 sf
#2	Discarded	376.00'	2.410 in/hr Exfiltration over Surface area Phase-In= 0.01'

Discarded OutFlow Max=0.0 cfs @ 5.21 hrs HW=376.04' (Free Discharge) **2=Exfiltration** (Exfiltration Controls 0.0 cfs)

Primary OutFlow Max=0.6 cfs @ 12.01 hrs HW=377.94' TW=0.00' (Dynamic Tailwater) 1=Culvert (Inlet Controls 0.6 cfs @ 2.01 fps)

Summary for Link DP-1: DESIGN POINT 1

Inflow Area	a =	303,248 sf,	14.83% Impervious,	Inflow Depth = 3.25"	for 100-year event
Inflow	=	18.0 cfs @	12.30 hrs, Volume=	82,108 cf	-
Primary	=	18.0 cfs @	12.30 hrs, Volume=	82,108 cf, Atte	n= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-96.00 hrs, dt= 0.01 hrs

85 & 95 West Street - Proposed Conditions

85 West Street Northborough JN-1207.03 - ProposedType III 24-hr 100-year Rainfall=7.78"

Prepared by WDA Design Group

Printed 5/3/2021

Page 86

HydroCAD® 10.10-5a s/n 11557 © 2020 HydroCAD Software Solutions LLC

Summary for Link DP-2: DESIGN POINT 2

Inflow Area = 451,037 sf, 7.83% Impervious, Inflow Depth = 4.18" for 100-year event

Inflow 157,291 cf

33.9 cfs @ 12.29 hrs, Volume= 33.9 cfs @ 12.29 hrs, Volume= 157,291 cf, Atten= 0%, Lag= 0.0 min Primary

Primary outflow = Inflow, Time Span= 0.00-96.00 hrs, dt= 0.01 hrs

APPENDICES

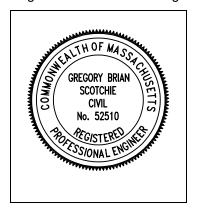
Massachusetts Department of Environmental Protection

Bureau of Resource Protection - Wetlands Program

Checklist for Stormwater Report

B. Stormwater Checklist and Certification

The following checklist is intended to serve as a guide for applicants as to the elements that ordinarily need to be addressed in a complete Stormwater Report. The checklist is also intended to provide conservation commissions and other reviewing authorities with a summary of the components necessary for a comprehensive Stormwater Report that addresses the ten Stormwater Standards.


Note: Because stormwater requirements vary from project to project, it is possible that a complete Stormwater Report may not include information on some of the subjects specified in the Checklist. If it is determined that a specific item does not apply to the project under review, please note that the item is not applicable (N.A.) and provide the reasons for that determination.

A complete checklist must include the Certification set forth below signed by the Registered Professional Engineer who prepared the Stormwater Report.

Registered Professional Engineer's Certification

I have reviewed the Stormwater Report, including the soil evaluation, computations, Long-term Pollution Prevention Plan, the Construction Period Erosion and Sedimentation Control Plan (if included), the Longterm Post-Construction Operation and Maintenance Plan, the Illicit Discharge Compliance Statement (if included) and the plans showing the stormwater management system, and have determined that they have been prepared in accordance with the requirements of the Stormwater Management Standards as further elaborated by the Massachusetts Stormwater Handbook. I have also determined that the information presented in the Stormwater Checklist is accurate and that the information presented in the Stormwater Report accurately reflects conditions at the site as of the date of this permit application.

Registered Professional Engineer Block and Signature

5/3/2021

Signature and Date

Checklist

Project Type	: Is the	e applica	ation for	new d	levelopmer	nt, redev	elopment	, or a r	mix of	new	and
redevelopme	nt?										

\bowtie	New	devel	lopment
-----------	-----	-------	---------

□ Redevelopment

Mix of New Development and Redevelopment

Massachusetts Department of Environmental Protection

Bureau of Resource Protection - Wetlands Program

Checklist for Stormwater Report

Checklist (continued) LID Measures: Stormwater Standards require LID measures to be considered. Document what environmentally sensitive design and LID Techniques were considered during the planning and design of the project: ☐ No disturbance to any Wetland Resource Areas Site Design Practices (e.g. clustered development, reduced frontage setbacks) Reduced Impervious Area (Redevelopment Only) Minimizing disturbance to existing trees and shrubs ☐ LID Site Design Credit Requested: Credit 1 Credit 2 Credit 3 ☐ Use of "country drainage" versus curb and gutter conveyance and pipe ☐ Bioretention Cells (includes Rain Gardens) Constructed Stormwater Wetlands (includes Gravel Wetlands designs) Treebox Filter ☐ Water Quality Swale Grass Channel ☐ Green Roof Infiltration Basins Other (describe): Standard 1: No New Untreated Discharges No new untreated discharges Outlets have been designed so there is no erosion or scour to wetlands and waters of the Commonwealth Supporting calculations specified in Volume 3 of the Massachusetts Stormwater Handbook included.

Cł	necklist (continued)
Sta	andard 2: Peak Rate Attenuation
	Standard 2 waiver requested because the project is located in land subject to coastal storm flowage and stormwater discharge is to a wetland subject to coastal flooding. Evaluation provided to determine whether off-site flooding increases during the 100-year 24-hour storm.
	Calculations provided to show that post-development peak discharge rates do not exceed predevelopment rates for the 2-year and 10-year 24-hour storms. If evaluation shows that off-site flooding increases during the 100-year 24-hour storm, calculations are also provided to show that post-development peak discharge rates do not exceed pre-development rates for the 100-year 24-hour storm.
Sta	andard 3: Recharge
\boxtimes	Soil Analysis provided.
\boxtimes	Required Recharge Volume calculation provided.
	Required Recharge volume reduced through use of the LID site Design Credits.
	Sizing the infiltration, BMPs is based on the following method: Check the method used.
	Runoff from all impervious areas at the site discharging to the infiltration BMP.
\boxtimes	Runoff from all impervious areas at the site is <i>not</i> discharging to the infiltration BMP and calculations are provided showing that the drainage area contributing runoff to the infiltration BMPs is sufficient to generate the required recharge volume.
\boxtimes	Recharge BMPs have been sized to infiltrate the Required Recharge Volume.
	Recharge BMPs have been sized to infiltrate the Required Recharge Volume <i>only</i> to the maximum extent practicable for the following reason:
	☐ Site is comprised solely of C and D soils and/or bedrock at the land surface
	M.G.L. c. 21E sites pursuant to 310 CMR 40.0000
	☐ Solid Waste Landfill pursuant to 310 CMR 19.000
	Project is otherwise subject to Stormwater Management Standards only to the maximum extent practicable.
\boxtimes	Calculations showing that the infiltration BMPs will drain in 72 hours are provided.
	Property includes a M.G.L. c. 21E site or a solid waste landfill and a mounding analysis is included.

¹ 80% TSS removal is required prior to discharge to infiltration BMP if Dynamic Field method is used.

Cł	necklist (continued)
Sta	andard 3: Recharge (continued)
	The infiltration BMP is used to attenuate peak flows during storms greater than or equal to the 10-year 24-hour storm and separation to seasonal high groundwater is less than 4 feet and a mounding analysis is provided.
	Documentation is provided showing that infiltration BMPs do not adversely impact nearby wetland resource areas.
Sta	ndard 4: Water Quality
	a Long-Term Pollution Prevention Plan typically includes the following: Good housekeeping practices; Provisions for storing materials and waste products inside or under cover; Vehicle washing controls; Requirements for routine inspections and maintenance of stormwater BMPs; Spill prevention and response plans; Provisions for maintenance of lawns, gardens, and other landscaped areas; Requirements for storage and use of fertilizers, herbicides, and pesticides; Pet waste management provisions; Provisions for operation and management of septic systems; Provisions for solid waste management; Snow disposal and plowing plans relative to Wetland Resource Areas; Winter Road Salt and/or Sand Use and Storage restrictions; Street sweeping schedules; Provisions for prevention of illicit discharges to the stormwater management system; Documentation that Stormwater BMPs are designed to provide for shutdown and containment in the event of a spill or discharges to or near critical areas or from LUHPPL; Training for staff or personnel involved with implementing Long-Term Pollution Prevention Plan; List of Emergency contacts for implementing Long-Term Pollution Prevention Plan. A Long-Term Pollution Prevention Plan is attached to Stormwater Report and is included as an attachment to the Wetlands Notice of Intent. Treatment BMPs subject to the 44% TSS removal pretreatment requirement and the one inch rule for calculating the water quality volume are included, and discharge: is within the Zone II or Interim Wellhead Protection Area is near or to other critical areas is near or to other critical areas is within soils with a rapid infiltration rate (greater than 2.4 inches per hour)
	The Required Water Quality Volume is reduced through use of the LID site Design Credits.
	Calculations documenting that the treatment train meets the 80% TSS removal requirement and, if applicable, the 44% TSS removal pretreatment requirement, are provided.

Gr	necklist (continued)
Sta	ndard 4: Water Quality (continued)
\boxtimes	The BMP is sized (and calculations provided) based on:
	☐ The ½" or 1" Water Quality Volume or
	☐ The equivalent flow rate associated with the Water Quality Volume and documentation is provided showing that the BMP treats the required water quality volume.
	The applicant proposes to use proprietary BMPs, and documentation supporting use of proprietary BMP and proposed TSS removal rate is provided. This documentation may be in the form of the propriety BMP checklist found in Volume 2, Chapter 4 of the Massachusetts Stormwater Handbook and submitting copies of the TARP Report, STEP Report, and/or other third party studies verifying performance of the proprietary BMPs.
	A TMDL exists that indicates a need to reduce pollutants other than TSS and documentation showing that the BMPs selected are consistent with the TMDL is provided.
Sta	ndard 5: Land Uses With Higher Potential Pollutant Loads (LUHPPLs)
	The NPDES Multi-Sector General Permit covers the land use and the Stormwater Pollution Prevention Plan (SWPPP) has been included with the Stormwater Report. The NPDES Multi-Sector General Permit covers the land use and the SWPPP will be submitted <i>prior to</i> the discharge of stormwater to the post-construction stormwater BMPs.
	The NPDES Multi-Sector General Permit does <i>not</i> cover the land use.
	LUHPPLs are located at the site and industry specific source control and pollution prevention measures have been proposed to reduce or eliminate the exposure of LUHPPLs to rain, snow, snow melt and runoff, and been included in the long term Pollution Prevention Plan.
	All exposure has been eliminated.
	All exposure has <i>not</i> been eliminated and all BMPs selected are on MassDEP LUHPPL list.
	The LUHPPL has the potential to generate runoff with moderate to higher concentrations of oil and grease (e.g. all parking lots with >1000 vehicle trips per day) and the treatment train includes an oil grit separator, a filtering bioretention area, a sand filter or equivalent.
Sta	ndard 6: Critical Areas
	The discharge is near or to a critical area and the treatment train includes only BMPs that MassDEP has approved for stormwater discharges to or near that particular class of critical area.
	Critical areas and BMPs are identified in the Stormwater Report.

Massachusetts Department of Environmental Protection

Bureau of Resource Protection - Wetlands Program

Checklist for Stormwater Report

Cr	necklist (continued)
	Indard 7: Redevelopments and Other Projects Subject to the Standards only to the maximum cent practicable The project is subject to the Stormwater Management Standards only to the maximum Extent Practicable as a:
	☐ Limited Project
	 Small Residential Projects: 5-9 single family houses or 5-9 units in a multi-family development provided there is no discharge that may potentially affect a critical area. Small Residential Projects: 2-4 single family houses or 2-4 units in a multi-family development with a discharge to a critical area Marina and/or boatyard provided the hull painting, service and maintenance areas are protected from exposure to rain, snow, snow melt and runoff Bike Path and/or Foot Path
	Redevelopment Project
	Redevelopment portion of mix of new and redevelopment.
	Certain standards are not fully met (Standard No. 1, 8, 9, and 10 must always be fully met) and an explanation of why these standards are not met is contained in the Stormwater Report. The project involves redevelopment and a description of all measures that have been taken to improve existing conditions is provided in the Stormwater Report. The redevelopment checklist found in Volume 2 Chapter 3 of the Massachusetts Stormwater Handbook may be used to document that the proposed stormwater management system (a) complies with Standards 2, 3 and the pretreatment

Standard 8: Construction Period Pollution Prevention and Erosion and Sedimentation Control

and structural BMP requirements of Standards 4-6 to the maximum extent practicable and (b)

A Construction Period Pollution Prevention and Erosion and Sedimentation Control Plan must include the following information:

- Narrative:
- Construction Period Operation and Maintenance Plan;
- Names of Persons or Entity Responsible for Plan Compliance;
- Construction Period Pollution Prevention Measures:
- Erosion and Sedimentation Control Plan Drawings;
- Detail drawings and specifications for erosion control BMPs, including sizing calculations;
- Vegetation Planning;
- Site Development Plan;

improves existing conditions.

- Construction Sequencing Plan;
- Sequencing of Erosion and Sedimentation Controls;
- Operation and Maintenance of Erosion and Sedimentation Controls;
- Inspection Schedule;
- Maintenance Schedule;
- Inspection and Maintenance Log Form.
- A Construction Period Pollution Prevention and Erosion and Sedimentation Control Plan containing the information set forth above has been included in the Stormwater Report.

Cł	hecklist (continued)
	andard 8: Construction Period Pollution Prevention and Erosion and Sedimentation Control ontinued)
	The project is highly complex and information is included in the Stormwater Report that explains why it is not possible to submit the Construction Period Pollution Prevention and Erosion and Sedimentation Control Plan with the application. A Construction Period Pollution Prevention and Erosion and Sedimentation Control has <i>not</i> been included in the Stormwater Report but will be submitted <i>before</i> land disturbance begins.
	The project is <i>not</i> covered by a NPDES Construction General Permit.
	The project is covered by a NPDES Construction General Permit and a copy of the SWPPP is in the Stormwater Report. The project is covered by a NPDES Construction General Permit but no SWPPP been submitted. The SWPPP will be submitted REFORE land disturbance begins.
Sta	The SWPPP will be submitted BEFORE land disturbance begins. andard 9: Operation and Maintenance Plan
	The Post Construction Operation and Maintenance Plan is included in the Stormwater Report and
	includes the following information:
	Name of the stormwater management system owners;
	□ Party responsible for operation and maintenance;
	Schedule for implementation of routine and non-routine maintenance tasks;
	☑ Plan showing the location of all stormwater BMPs maintenance access areas;
	☐ Description and delineation of public safety features;
	☐ Estimated operation and maintenance budget; and
	☐ Operation and Maintenance Log Form.
	The responsible party is not the owner of the parcel where the BMP is located and the Stormwater Report includes the following submissions:
	A copy of the legal instrument (deed, homeowner's association, utility trust or other legal entity) that establishes the terms of and legal responsibility for the operation and maintenance of the project site stormwater BMPs;
	A plan and easement deed that allows site access for the legal entity to operate and maintain BMP functions.
Sta	andard 10: Prohibition of Illicit Discharges
\boxtimes	The Long-Term Pollution Prevention Plan includes measures to prevent illicit discharges;
	An Illicit Discharge Compliance Statement is attached;
\boxtimes	NO Illicit Discharge Compliance Statement is attached but will be submitted <i>prior to</i> the discharge of

Stormwater Management System Operation and Maintenance Plan Long Term Pollution Prevention Plan

> 85 & 95 West Street Northborough, MA

> > May 2021

PREPARED FOR:

Brant L. Viner & Margaret Harling P.O. Box 295 Ellsworth, ME 04605

RESPONSIBILITY:

The applicant, or assigns will be responsible for implementation of the Operation and Maintenance Plan and Long Term Pollution Prevention Plan for the stormwater management system of a common driveway and associated infrastructure for five single family lots at 85 & 95 West Street and for any corrective action required.

A detailed, written log of all scheduled preventative and corrective maintenance performed for the stormwater management measures must be kept on site, including a record of all inspections and copies of maintenance-related work orders.

Attachment 1, "Inspection and Maintenance Check List" shall be maintained as a record of regularly scheduled inspection and maintenance items as outlined below for every year. Maintenance required and actions taken shall be recorded in Attachment 2, "Inspection and Maintenance Log". The funding, operation, and maintenance of all stormwater management Best Management Practices (BMPs) shall be provided by the Owner, or their appointee.

Maintenance routine and schedule: Routine inspections will be conducted on a monthly basis and thorough investigations will be conducted twice a year. Tasks that are common to all systems include regular removal of accumulated sediments, floatables and debris. Inspections will occur after every major storm event for the first six (6) months after construction. Inspections will be conducted by a qualified person experienced in drainage design and stormwater management systems. Annual notification to the Town Engineer before any maintenance work is performed is required and the Town Engineer shall be afforded the opportunity to inspect the work. Annual reports will be prepared detailing the status of the stormwater system and the maintenance performed. The Town Engineer shall be provided copies of the contract and invoices for all work performed. All material removed from the drainage system shall be properly disposed of off-site. A copy of the annual report will be sent to the Town of Northborough, if requested.

SITE CONDITIONS:

The stormwater management system for the site includes deep-sump, hooded catch basins; closed drainage system (pipe and manholes); stormwater treatment units (proprietary structures); surface detention basins; and subsurface infiltration systems.

DEEP SUMP CATCH BASINS:

- 1. Catch basins shall be inspected four (4) times per year and cleaned whenever depth of sediment is greater than twenty-four (24) inches.
- 2. All sediments and hydrocarbons shall be properly handled and disposed in accordance with local, state, and federal guidelines and regulations.

ALL SUBSURFACE INFILTRATION SYSTEMS: INF-103, INF-104, INF-105, INF-106, INF-201 and INF-RF2 THROUGH INF-RF6

- 1. At a minimum annual inspection are recommended. Initially, the system should be inspected every 6 months for the first year of operation. For subsequent years, the inspection should be adjusted based upon previous observation of sediment deposition.
- 2. Inspection ports are provided to allow for observation and cleaning of subsurface facilities. These covers may be buried, requiring clearing to access the infiltration system. The inspection ports allow for easy access to the system from the surface, eliminating the need to perform a confined space entry for inspection purposes.
- 3. Ponded water inside the infiltration facilities after several days may indicate the bottom of the system is clogged. If upon visual inspection it is found that sediment has accumulated, a stadia rod should be inserted to determine the depth of sediment. When the average depth of sediment exceeds 3 inches throughout the length of row, clean-out should be performed.
- 4. Downhill slopes from infiltration areas shall be monitored weekly during construction and monthly thereafter for the first year of operation for signs of breakout. Annual inspection is to occur after the first year. Seepage from downhill slopes shall be an indication of a system failure and corrective action shall be taken.
- 5. Corrective action for system failure shall include removal and replacement of all stone aggregate and filter fabric. Accumulated sediment shall be removed from the trench bottom and the bottom shall be scarified or tilled to help induce infiltration.
- 6. Maintenance is accomplished with the JetVac process. The JetVac process utilizes a high pressure water nozzle to propel itself down the row while scouring and suspending sediments. As the nozzle is retrieved, the captured pollutants are flushed back into the manhole for vacuuming. Most sewer and pipe maintenance companies have vacuum/JetVac combination vehicles. Selection of an appropriate JetVac nozzle will improve maintenance efficiency. Fixed nozzles designed for culverts or large diameter pipe cleaning are preferable. Rear facing jets with an effective spread of at least 45" are best. Most JetVac reels have 400 feet of hose allowing maintenance of an Isolator Row up to 50 chambers long.

- 7. Inspect isolator row for sediment
 - A. Inspection ports
 - 1. Remove/open lid on inline drain
 - 2. Remove and clean filter if installed
 - 3. Using a flashlight and stadia rod, measure depth of sediment and record on maintenance log
 - 4. Lower a camera into isolator row plus for visual inspection of sediment levels (optional)
 - 5. If sediment is at, or above, 3" (80 mm) proceed to step 2. If not, proceed to step 8.
 - B. All isolator rows
 - 1. Remove cover from structure at upstream end of isolator row
 - 2. Using a flashlight, inspect down the isolator row plus through outlet pipe mirrors on poles or cameras may be used to avoid a confined space entry follow osha regulations for confined space entry if entering manhole
 - 3. If sediment is at, or above, 3" (80 mm) proceed to step 2. If not, proceed to step 3.
- 8. Clean out isolator row using the jetvac process
 - C. A fixed culvert cleaning nozzle with rear facing spread of 45" (1.1 m) or more is preferred
 - D. Apply multiple passes of jetvac until backflush water is clean
 - E. Vacuum structure sump as required
- 9. Replace all covers, grates, filters, and lids; record observations and actions.
- 10. Inspect and clean basins and manholes upstream of the system.

EXTENDED DRY DETENTION BASIN:

- 1. The detention basin is to utilized as a temporary sediment trap during construction. Prior to permanent stabilization the basin is to be cleared to six (6") inches below finished grade and topped with clean loam. The basin(s) shall be inspected for accumulated sediment at least twice per year and sediment shall be removed when depth is 12 inches or at least once every 10 years.
- 2. Basins shall be inspected at least twice per year and immediately following large storm events to determine if the basin is functioning as intended. Inspections should be conducted during wet weather to determine if the basin is meeting the targeted detention times (24-hour average detention time; 72-hour drawdown). The basins shall be checked for slope integrity, soil moisture, vegetative health, soil stability, soil compaction, soil erosion, ponding, and sedimentation. Any necessary repairs shall be made immediately.
- 3. During the first few months following construction, the basin shall be inspected to ensure that the proposed vegetation becomes adequately established.
- 4. At least twice during the growing season, the basin, side slopes, and embankments shall be mowed and any accumulated trash and debris removed.
- 5. To maintain the dense growth of herbaceous vegetation, periodic reseeding may be required.
- 6. Basins shall not be used for snow removal and yard waste disposal.

7. Outlet control structures, headwalls, and riprap aprons or riprap stilling basins shall be checked a minimum of once per year for evidence of clogging or flow restrictions and cleared as necessary. Any debris or accumulated sediments which could hinder flows shall be removed and disposed.

SPILL CONTAINMENT:

- 1. In the event of a reportable spill, the Owner or its representative shall also be responsible for closing the cut-off valve in a timely manner and notifying the appropriate authorities of the spill. In the event that spill materials enter the stormwater management basin, the Owner shall be responsible for spill removal and restoration of the basin to its original condition in accordance with all applicable local and state regulations.
- 2. Pollutant transport and deposition may vary from year to year and regular inspections will help ensure that the system is cleaned out at the appropriate time. At a minimum, inspections should be performed twice per year (e.g. spring and fall) however more frequent inspections may be necessary in climates where winter sanding operations may lead to rapid accumulations, or in equipment washdown areas. Installations should also be inspected more frequently where excessive amounts of trash are expected.

LAWN/LANDSCAPE MAINTENANCE:

- 1. Apply fertilizers properly; at the proper time of year and at proper application rates to ensure absorption. Pesticides are to be applied by licensed applicators only.
- 2. Limit lawn watering: chose drought-tolerant landscaping and grasses, and use mulch and compost to retain moisture.
- 3. Under no circumstance shall the stormwater management system be used for yard waste and landscape debris.

DEICING:

- 1. The use and loading rates for application of deicing salts should be limited to the minimum required to maintain safe vehicular and pedestrian travel.
- 2. Alternative materials such as sand or gravel, calcium chloride, and calcium magnesium acetate should be considered in areas adjacent to stormwater management facilities and resource areas.
- 3. Deicing materials shall be covered to prevent loss and migration.
- 4. Deicing storage areas shall be located outside the 100-foot buffer zone to any wetlands or waterbodies. Ideally storage shall occur indoors.

SNOW MANAGEMENT:

- 1. Snow shall be stockpiled in pervious areas where it can slowly infiltrate. Under no circumstance shall the stormwater management system be used for snow storage.
- 2. Avoid dumping/piling snow over catch basins to prevent blockages and localized flooding of the drainage system.
- 3. The Owner shall be responsible to manage snow storage on-site and to ensure that snow is not stockpiled in the basin.
- 4. Sediments deposited from the snow storage areas shall be removed every spring.

SWEEPING OF PAVED SURFACES:

- 1. All paved surfaces on-site including driveways, loading areas, and parking areas shall be swept at least once annually to remove accumulations of sand, silt, leaves, and other debris.
- 2. Sweeping should occur in April/May after snowmelt has occurred and thaw has begun. Sweepings shall be disposed of an approved off-site location away from resource areas (wetlands or waterways) and stormwater management facilities.

Attachment 1

INSPECTION CHECKLIST 85 & 95 West Street, Northborough, MA 01532													
FOR YEAR:													
		Inspection Frequency*											
Inspection Item		Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sept	Oct	Nov	Dec
1	Subsurface Infiltration System												
	INF-103												
	INF-104												
	INF-105												
	INF-106												
	INF-RF2												
	INF-RF3												
	INF-RF4												
	INF-RF5												
	INF-RF6												
2	Drainage Pipes and Manholes	at least every five years											
3	Deep Sump Catch Basins & Manholes	at least four times per year											

^{*} Actual time of inspecting and maintaining items may vary. Chart shall be used to indicate frequency of events

^{**} This chart shall be used in conjunction with the attached "Stormwater Management Operation and Maintenance Plan" and to any conditions/special conditions as outlined in any Order of Conditions issued by the Northborough Conservation Commission and/or "Declaration of Easements, Covenants, Conditions and Restrictions" document.

Attachment 1

	MAINTENANCE CHECKLIST - 85 & 95 West Street, Northborough, MA 01532												
	FOR YEAR:												
Maintenance Item													
Mair	ntenance Item	Jan	Feb	Mar	Apr	May				Sept	Oct	Nov	Dec
1	INF-103	Jan	100	IVIGI	7 (рі	Iviay	Jan	Jai	/ rag	Зерт		1101	Dec
	INF-104												
	INF-105												
	INF-106												
	INF-RF2												
	INF-RF3												
	INF-RF4												
	INF-RF5												
	INF-RF6												
2	Drainage Pipes and Manholes	at least every five years											
3	Deep Sump Catch Basins & Manholes					at least	four t	imes p	er yeaı	-			

^{*} Actual time of maintaining items may vary. Chart shall be used to indicate frequency of events

^{**} This chart shall be used in conjunction with the attached "Stormwater Management Operation and Maintenance Plan" and to any conditions/special conditions as outlined in any Order of Conditions issued by the Northborough Conservation Commission and/or "Declaration of Easements, Covenants, Conditions and Restrictions" document.

Name of Applicant: Brant L. Viner & Margaret Harling Location: 85 & 95 West Street, Northborough, MA 01532

Inspection and Maintenance Log

Date	Log Inspections Performed	Maintenance Action Taken
	·	
	Date	Date Inspections Performed Inspections Perfo

Name of Applicant: Brant L. Viner & Margaret Harling Location: 85 & 95 West Street, Northborough, MA 01532

Inspection and Maintenance Log

Inspection and Maintenance Log			
		Inspections	
Inspection No.	Date	Performed	Maintenance Action Taken
irispection No.	Date	renomieu	Walliterlance Action Taken
18			
10			
19			
13			
20			
21			
22			
23			
24			
25			
26			
27			
28			
30			
29			
20			
30		-	
31			
31			
32			
32			

Calc. By:	GBS	Date:	3-May-21
Chk. By:		Date:	

85 & 95 WEST STREET Northborough, MA

Groundwater Recharge Calculations

Required Recharge Volume¹

Rv = F x impervious area

Where: Rv = required recharge volume (acre-feet)

NRCS Hydrologic Soil Type	Approx. Soil Texture	Target Depth Factor (inches)	Impervious Area (acre)	Rv (acre-feet)	Rv (cf)
Α	sand	1.00	0.16	0.014	598
В	loam	0.35	0.00	0.000	0
С	silty loam	0.25	1.16	0.024	1,049
D	clay	0.10	0.00	0.000	1
			Total =	0.038	1,648

Provided Recharge Volume²

	Static	Static
	Storage	Storage
Infiltration	Volume	Volume
Area	(acre-feet)	(cf)
INF-103	0.0026	115
INF-104	0.0445	1,937
INF-105	0.1057	4,605
INF-106	0.0529	2,306
INF-201	0.0603	2,626
INF-RF2	0.0021	92
INF-RF3	0.0021	92
INF-RF4	0.0021	92
INF-RF5	0.0021	92
INF-RF6	0.0021	92
Pond-(1P)	0.0000	0
Total =	0.2766	12,049

Notes:

- 1.) Refer to Massachusetts Stormwater Handbook Volume 3, Chapter 1, page 15 dated February 2008.
- 2.) Provided recharge volume is based on the Static Method, refer to Massachusetts Stormwater Handbook Volume 3, Chapter 1, page 18 dated February 2008.

PAGE NO. 84

Calc. By:	GBS	Date: _	3-May-21
Chk. By:		Date:	

COMMON DRIVEWAY 85 & 95 WEST STREET Northborough, MA

Water Quality Calculations

WATER QUALITY TREATMENT VOLUME

 $V_{WQ} = (D_{WQ}/12 \text{ inches/foot}) * (A_{IMP} * 43,560 \text{ square feet/acre})$

Where: V_{WQ} = Required Water Quality Volume (in cubic feet)

D_{WQ} = Water Quality Depth

A_{IMP} = Impervious Area (in acres)

Stormwater		A _{IMP}	Required	Provided
Facility	D _{wQ} (inches)	(acres)	V_{WQ} (ft ³)	V_{WQ} (ft ³)
INF-103	0.5	0.0944	171	115
INF-104	0.5	0.0644	117	1,937
INF-105	0.5	0.1933	351	4,605
INF-106	0.5	0.3012	547	2,306
INF-201	0.5	0.0636	115	2,626
INF-RF2	0.5	0.0715	130	92
INF-RF3	0.5	0.0387	70	92
INF-RF4	0.5	0.0715	130	92
INF-RF5	0.5	0.0715	130	92
INF-RF6	0.5	0.0715	130	92
Pond-(1P)	0.5	0.2391	434	0
Total =			2,325	12,049

Notes:

- 1.) Refer to Massachusetts Stormwater Handbook Volume 3, Chapter 1, page 32 dated February 2008.
- 2.) Refer to HydroCAD® report.

Rawls Rates 5/3/2021

Texture Class	NRCS Hydrologic Soil Group (HSG)	Infiltration Rate (inches/hour)
sand	Α	8.27
loamy sand	Α	2.41
sandy loam	В	1.02
loam	В	0.52
silt loam	С	0.27
sandy clay loam	С	0.17
clay loam	D	0.09
silty clay loam	D	0.06
sandy clay	D	0.05
silty clay	D	0.04
clay	D	0.02

Refer to Massachusetts Stormwater Handbook Volume 3, Chapter 1, page 22 dated February 2008.

Stage-Area-Storage for Pond INF-103: INF-103

ElevationSurfaceStorageElevationSurfaceStorage(feet)(sq-ft)(cubic-feet)(feet)(sq-ft)(cubic-feet)326.004730326.52473102	
326.01 473 2 326.53 473 105	
326.02 473 4 326.54 473 108	
326.03 473 6 326.55 473 112	Recharge
326.04 473 8 <mark>326.56</mark> 473 115	Volume
326.05 473 9 326.57 473 119	Provided
326.06 473 11 326.58 473 122	
326.07 473 13 326.59 473 126	
326.08 473 15 326.60 473 129	
326.09 473 17 326.61 473 133	
326.10 473 19 326.62 473 136	
326.11 473 21 326.63 473 140	
326.12 473 23 326.64 473 143	
326.13 473 25 326.65 473 147	
326.14 473 26 326.66 473 150	
326.15 473 28 326.67 473 153	
326.16 473 30 326.68 473 157	
326.17 473 32 326.69 473 160	
326.18 473 34 326.70 473 164	
326.19 473 36 326.71 473 167	
326.20 473 38 326.72 473 170	
326.21 473 40 326.73 473 174	
326.22 473 42 326.74 473 177	
326.23 473 43 326.75 473 180	
326.24 473 45 326.76 473 184	
326.25 473 47 326.77 473 187	
326.26 473 49 326.78 473 190	
326.27 473 51 326.79 473 194	
326.28 473 53 326.80 473 197	
326.29 473 55 326.81 473 200	
326.30 473 57 326.82 473 203	
326.31 473 59 326.83 473 207	
326.32 473 61 326.84 473 210	
326.33 473 62 326.85 473 213	
326.34 473 64 326.86 473 216 326.35 473 66 326.87 473 220	
326.36 473 68 326.88 473 223	
326.36 473 66 326.66 473 223 326.37 473 70 326.89 473 226	
326.38 473 70 326.69 473 220 326.38 473 72 326.90 473 229	
326.39 473 74 326.91 473 232	
326.40 473 76 326.92 473 236	
326.40 473 76 326.92 473 239 326.41 473 78 326.93 473 239	
326.42 473 79 326.94 473 242	
326.43 473 81 326.95 473 245	
326.44 473 83 326.96 473 248	
326.45 473 85 326.97 473 251	
326.46 473 87 326.98 473 254	
326.47 473 89 326.99 473 258	
326.48 473 91 327.00 473 261	
326.49 473 93 327.01 473 264	
326.50 473 95 327.02 473 267	
326.51 473 98 327.03 473 270	

Stage-Area-Storage for Pond INF-104: INF-104 (continued)

(feet) (sq-ft) (cubic-feet) 326 id 1,889 1,966 326 id 1,889 1,205 326 id 1,889 1,986 326 id 1,889 1,220 326 id 1,889 1,980 326 id 1,889 1,285 326 id 1,889 1,980 326 id 1,889 1,285 326 id 1,889 1,280 326 id 1,889 2,008 326 id 1,889 1,280 326 id 1,889 2,002 326 id 1,889 2,002 326 id 1,889 2,003 326 id 1,889 1,280 326 id 1,889 2,003 326 id 1,889 1,280 326 id 1,889 2,005 326 id 1,889 1,310 326 id 1,889 2,005 326 id 1,889 1,340 326 id 1,889 2,005 326 id 1,889 1,340 326 id 1,889 2,007 326 id 326 id 1,889 1,340 326 id 1,889 2,007 326 id 3,889 1,340 326 id 1,889 2,007 326 id 3,889 1,340 326 id 1,889 2,007 326 id 3,889 1,340 326 id 1,889 2,107 326 id 3,889 1,384 3,26 id 3,889 2,107 3,26 id 3,26 id 3,889 1,384 3,26 id 3,889 2,107 3,26 id	E	Elevation	Surface	Storage	Elevation	Surface	Storage
326.15		(feet)	(sq-ft)	(cubic-feet)	(feet)	(sq-ft)	(cubic-feet)
326.16							
326.17 1,889 1,256 326.69 1,889 2,008 326.18 1,889 1,265 326.70 1,889 2,002 326.19 1,889 1,280 326.71 1,889 2,037 326.20 1,889 1,295 326.72 1,889 2,051 326.21 1,889 1,310 326.73 1,889 2,065 326.22 1,889 1,325 326.74 1,889 2,079 326.23 1,889 1,340 326.75 1,889 2,079 326.23 1,889 1,340 326.75 1,889 2,079 326.24 1,889 1,369 326.77 1,889 2,107 326.25 1,889 1,369 326.77 1,889 2,107 326.25 1,889 1,369 326.77 1,889 2,107 326.26 1,889 1,369 326.77 1,889 2,135 326.27 1,889 1,389 326.79 1,889 2,146 326.27 1,889 1,389 326.79 1,889 2,146 326.29 1,889 1,444 326.80 1,889 2,162 326.29 1,889 1,449 326.81 1,889 2,162 326.30 1,889 1,444 326.82 1,889 2,176 326.30 1,889 1,444 326.82 1,889 2,190 326.31 1,889 1,444 326.82 1,889 2,204 326.32 1,889 1,473 326.84 1,889 2,218 326.33 1,889 1,458 326.83 1,889 2,218 326.33 1,889 1,458 326.83 1,889 2,218 326.33 1,889 1,458 326.85 1,889 2,218 326.33 1,889 1,503 326.86 1,889 2,218 326.35 1,889 1,503 326.86 1,889 2,255 326.36 1,889 1,503 326.86 1,889 2,255 326.36 1,889 1,503 326.86 1,889 2,255 326.36 1,889 1,503 326.87 1,889 2,255 326.36 1,889 1,503 326.87 1,889 2,255 326.36 1,889 1,503 326.87 1,889 2,255 326.36 1,889 1,503 326.87 1,889 2,255 326.36 1,889 1,503 326.87 1,889 2,253 326.37 1,889 1,503 326.87 1,889 2,255 326.36 1,889 1,503 326.80 1,889 2,255 326.36 1,889 1,503 326.80 1,889 2,255 326.36 1,889 1,503 326.80 1,889 2,355 326.41 1,889 1,504 326.90 1,889 2,355 326.41 1,889 1,504 326.90 1,889 2,355 326.41 1,889 1,504 326.90 1,889 2,355 326.44 1,889 1,504 326.90 1,889 2,355 326.44 1,889 1,504 326.90 1,889 2,355 326.44 1,889 1,504 326.90 1,889 2,355 326.45 1,889 1,504 326.90 1,889 2,355 326.45 1,889 1,504 326.90 1,889 2,355 326.45 1,889 1,606 326.93 1,889 2,355 326.44 1,889 1,606 326.93 1,889 2,355 326.45 1,889 1,606 326.93 1,889 2,355 326.46 1,889 1,606 326.93 1,889 2,355 326.47 1,889 1,606 326.93 1,889 2,355 326.47 1,889 1,606 326.93 1,889 2,355 326.48 1,889 1,606 326.93 1,889 2,355 326.48 1,889 1,606 326.93 1,889 2,355 326.56 1,889 1,707 327.00 1,889 2,355 326.56 1,889 1,707 327.00 1,889							
326.18 1,889 1,280 326.70 1,889 2,032 326.19 1,889 1,280 326.71 1,889 2,031 326.20 1,889 1,295 326.72 1,889 2,065 326.21 1,889 1,310 326.73 1,889 2,065 326.22 1,889 1,310 326.73 1,889 2,079 326.23 1,889 1,340 326.75 1,889 2,093 326.24 1,889 1,355 326.76 1,889 2,093 326.24 1,889 1,355 326.76 1,889 2,107 326.25 1,889 1,369 326.77 1,889 2,112 326.26 1,889 1,369 326.77 1,889 2,121 326.26 1,889 1,369 326.77 1,889 2,121 326.26 1,889 1,389 1,369 326.77 1,889 2,135 326.27 1,889 1,399 326.79 1,889 2,148 326.28 1,889 1,414 326.80 1,889 2,146 326.29 1,889 1,444 326.80 1,889 2,162 326.30 1,889 1,444 326.80 1,889 2,190 326.31 1,889 1,458 326.83 1,889 2,204 326.32 1,889 1,458 326.83 1,889 2,204 326.32 1,889 1,488 326.85 1,889 2,218 326.33 1,889 1,488 326.85 1,889 2,218 326.33 1,889 1,488 326.85 1,889 2,218 326.35 1,889 1,517 326.87 1,889 2,232 326.36 1,889 1,517 326.87 1,889 2,273 326.37 1,889 1,517 326.87 1,889 2,273 326.37 1,889 1,517 326.87 1,889 2,273 326.37 1,889 1,561 326.90 1,889 2,273 326.37 1,889 1,561 326.90 1,889 2,310 326.40 1,889 1,561 326.90 1,889 2,310 326.40 1,889 1,561 326.90 1,889 2,310 326.40 1,889 1,561 326.90 1,889 2,310 326.40 1,889 1,561 326.90 1,889 2,310 326.40 1,889 1,561 326.90 1,889 2,310 326.40 1,889 1,561 326.90 1,889 2,310 326.40 1,889 1,561 326.90 1,889 2,310 326.40 1,889 1,561 326.90 1,889 2,310 326.44 1,889 1,605 326.91 1,889 2,341 326.42 1,889 1,605 326.91 1,889 2,341 326.44 1,889 1,605 326.91 1,889 2,341 326.45 1,889 1,605 326.95 1,889 2,345 326.46 1,889 1,605 326.99 1,889 2,345 326.46 1,889 1,605 326.90 1,889 2,345 326.46 1,889 1,605 326.90 1,889 2,345 326.46 1,889 1,605 326.90 1,889 2,345 326.46 1,889 1,605 326.90 1,889 2,345 326.46 1,889 1,605 326.90 1,889 2,345 326.46 1,889 1,605 326.90 1,889 2,345 326.46 1,889 1,605 326.90 1,889 2,345 326.46 1,889 1,605 326.90 1,889 2,345 326.46 1,889 1,605 326.90 1,889 2,345 326.46 1,889 1,605 326.90 1,889 2,345 326.46 1,889 1,605 326.90 1,889 2,345 326.46 1,889 1,605 326.90 1,889 2,420 326.61 1,889 1,605 327.00 1,889 2,420 326.61 1,889 1,605 327.00							
326.19 1,889 1,280 326.71 1,889 2,037 326.20 1,889 1,295 326.72 1,889 2,051 326.21 1,889 1,310 326.73 1,889 2,065 326.22 1,889 1,325 326.74 1,889 2,079 326.23 1,889 1,340 326.75 1,889 2,079 326.23 1,889 1,340 326.76 1,889 2,107 326.25 1,889 1,369 326.77 1,889 2,107 326.25 1,889 1,369 326.77 1,889 2,121 326.26 1,889 1,369 326.77 1,889 2,121 326.26 1,889 1,384 326.78 1,889 2,135 326.27 1,889 1,399 326.79 1,889 2,148 326.29 1,889 1,444 326.80 1,889 2,162 326.29 1,889 1,444 326.80 1,889 2,162 326.29 1,889 1,444 326.82 1,889 2,176 326.30 1,889 1,444 326.82 1,889 2,204 326.31 1,889 1,448 326.83 1,889 2,204 326.31 1,889 1,448 326.83 1,889 2,204 326.35 1,889 1,473 326.84 1,889 2,218 326.33 1,889 1,488 326.85 1,889 2,232 326.34 1,889 1,517 326.87 1,889 2,232 326.35 1,889 1,517 326.87 1,889 2,259 326.36 1,889 1,517 326.87 1,889 2,259 326.36 1,889 1,517 326.89 1,889 2,273 326.37 1,889 1,547 326.89 1,889 2,273 326.37 1,889 1,547 326.89 1,889 2,273 326.37 1,889 1,561 326.90 1,889 2,300 326.39 1,889 1,561 326.90 1,889 2,300 326.39 1,889 1,561 326.90 1,889 2,301 326.41 1,889 1,561 326.90 1,889 2,301 326.41 1,889 1,561 326.90 1,889 2,301 326.41 1,889 1,605 326.91 1,889 2,301 326.41 1,889 1,605 326.91 1,889 2,301 326.41 1,889 1,605 326.91 1,889 2,301 326.41 1,889 1,605 326.94 1,889 2,305 326.44 1,889 1,605 326.94 1,889 2,305 326.44 1,889 1,605 326.94 1,889 2,305 326.44 1,889 1,605 326.94 1,889 2,305 326.44 1,889 1,605 326.94 1,889 2,305 326.44 1,889 1,605 326.94 1,889 2,305 326.46 1,889 1,605 326.94 1,889 2,305 326.46 1,889 1,605 326.94 1,889 2,305 326.46 1,889 1,605 326.94 1,889 2,305 326.46 1,889 1,605 326.94 1,889 2,305 326.46 1,889 1,605 326.94 1,889 2,305 326.46 1,889 1,605 326.94 1,889 2,305 326.47 1,889 1,605 326.94 1,889 2,305 326.47 1,889 1,605 326.94 1,889 2,305 326.47 1,889 1,605 326.94 1,889 2,305 326.47 1,889 1,605 326.94 1,889 2,305 326.47 1,889 1,605 326.94 1,889 2,305 326.48 1,889 1,707 327.00 1,889 2,355 326.56 1,889 1,707 327.00 1,889 2,459 326.55 1,889 1,709 327.00 1,889 2,459 326.55 1,889 1,800 327.07 1,889							
326.20 1,889 1,295 326.72 1,889 2,051 326.21 1,889 1,310 326.73 1,889 2,063 326.22 1,889 1,325 326.74 1,889 2,079 326.23 1,889 1,340 326.75 1,889 2,093 326.24 1,889 1,355 326.76 1,889 2,107 326.25 1,889 1,369 326.77 1,889 2,107 326.25 1,889 1,384 326.76 1,889 2,135 326.27 1,889 1,389 1,384 326.78 1,889 2,135 326.27 1,889 1,399 326.79 1,889 2,148 326.28 1,889 1,414 326.80 1,889 2,162 326.29 1,889 1,444 326.80 1,889 2,162 326.29 1,889 1,444 326.82 1,889 2,176 326.30 1,889 1,444 326.82 1,889 2,190 326.31 1,889 1,458 326.83 1,889 2,204 326.32 1,889 1,473 326.84 1,889 2,218 326.33 1,889 1,488 326.85 1,889 2,218 326.33 1,889 1,488 326.85 1,889 2,218 326.35 1,889 1,503 326.86 1,889 2,245 326.35 1,889 1,503 326.86 1,889 2,245 326.35 1,889 1,517 326.87 1,889 2,245 326.36 1,889 1,517 326.87 1,889 2,245 326.36 1,889 1,517 326.87 1,889 2,245 326.36 1,889 1,557 326.86 1,889 2,245 326.36 1,889 1,557 326.86 1,889 2,245 326.36 1,889 1,557 326.86 1,889 2,245 326.36 1,889 1,557 326.87 1,889 2,245 326.36 1,889 1,557 326.87 1,889 2,259 326.36 1,889 1,557 326.87 1,889 2,259 326.41 1,889 1,561 326.90 1,889 2,314 326.40 1,889 1,561 326.90 1,889 2,314 326.40 1,889 1,561 326.90 1,889 2,314 326.42 1,889 1,605 326.91 1,889 2,314 326.42 1,889 1,605 326.91 1,889 2,341 326.42 1,889 1,605 326.91 1,889 2,341 326.42 1,889 1,605 326.91 1,889 2,341 326.44 1,889 1,605 326.91 1,889 2,341 326.44 1,889 1,605 326.91 1,889 2,341 326.45 1,889 1,605 326.91 1,889 2,341 326.45 1,889 1,605 326.91 1,889 2,341 326.45 1,889 1,605 326.91 1,889 2,341 326.45 1,889 1,605 326.91 1,889 2,341 326.45 1,889 1,605 326.91 1,889 2,341 326.45 1,889 1,605 326.91 1,889 2,341 326.45 1,889 1,605 326.91 1,889 2,341 326.45 1,889 1,605 326.91 1,889 2,341 326.45 1,889 1,605 326.91 1,889 2,341 326.45 1,889 1,605 326.91 1,889 2,341 326.45 1,889 1,605 326.91 1,889 2,341 326.45 1,889 1,605 326.91 1,889 2,345 326.55 1,889 1,765 327.00 1,889 2,355 326.46 1,889 1,765 327.00 1,889 2,355 326.55 1,889 1,765 327.00 1,889 2,355 326.55 1,889 1,765 327.00 1,889 2,555 326.56 1,889 1,809 327.00							
326.21 1,889 1,310 326.73 1,889 2,065 326.22 1,889 1,325 326.74 1,889 2,079 326.23 1,889 1,340 326.75 1,889 2,093 326.24 1,889 1,355 326.76 1,889 2,107 326.25 1,889 1,369 326.77 1,889 2,107 326.26 1,889 1,399 326.78 1,889 2,135 326.27 1,889 1,399 326.79 1,889 2,135 326.28 1,889 1,414 326.80 1,889 2,162 326.29 1,889 1,429 326.81 1,889 2,162 326.30 1,889 1,449 326.81 1,889 2,176 326.31 1,889 1,449 326.82 1,889 2,176 326.31 1,889 1,458 326.83 1,889 2,204 326.32 1,889 1,473 326.84 1,889 2,204 326.33 1,889 1,473 326.84 1,889 2,204 326.35 1,889 1,503 326.86 1,889 2,232 326.34 1,889 1,503 326.86 1,889 2,232 326.36 1,889 1,517 326.87 1,889 2,232 326.37 1,889 1,532 326.88 1,889 2,273 326.37 1,889 1,547 326.89 1,889 2,286 326.38 1,889 1,561 326.99 1,889 2,286 326.39 1,889 1,561 326.99 1,889 2,300 326.39 1,889 1,561 326.99 1,889 2,300 326.39 1,889 1,561 326.99 1,889 2,314 326.40 1,889 1,591 326.99 1,889 2,314 326.40 1,889 1,591 326.99 1,889 2,341 326.41 1,889 1,605 326.91 1,889 2,341 326.42 1,889 1,605 326.91 1,889 2,341 326.44 1,889 1,605 326.93 1,889 2,341 326.44 1,889 1,605 326.93 1,889 2,341 326.45 1,889 1,606 326.97 1,889 2,355 326.46 1,889 1,606 326.97 1,889 2,368 326.47 1,889 1,605 326.99 1,889 2,368 326.48 1,889 1,678 326.99 1,889 2,368 326.49 1,889 1,606 326.97 1,889 2,368 326.49 1,889 1,606 326.97 1,889 2,368 326.40 1,889 1,678 326.99 1,889 2,449 326.50 1,889 1,766 327.00 1,889 2,459 326.51 1,889 1,766 327.00 1,889 2,459 326.55 1,889 1,766 327.00 1,889 2,459 326.56 1,889 1,794 327.06 1,889 2,502 326.56 1,889 1,786 327.10 1,889 2,555 326.59 1,889 1,866 327.11 1,889 2,555 326.60 1,889 1,889 1,823 327.10 1,889 2,555 326.60 1,889 1,889 1,866 327.11 1,889 2,551 326.60 1,889 1,889 1,866 327.11 1,889 2,564 Volume 326.64 1,889 1,990 327.14 1,889 2,604							
326.22 1,889 1,325 326,74 1,889 2,079 326.25 1,889 1,369 326,77 1,889 2,107 326.25 1,889 1,369 326,77 1,889 2,121 326.26 1,889 1,384 326,78 1,889 2,135 326.27 1,889 1,399 326,79 1,889 2,148 326.28 1,889 1,414 326,80 1,889 2,162 326.29 1,889 1,444 326,80 1,889 2,176 326.30 1,889 1,444 326,81 1,889 2,176 326.30 1,889 1,444 326,82 1,889 2,176 326.31 1,889 1,458 326,83 1,889 2,190 326.31 1,889 1,458 326,83 1,889 2,218 326.32 1,889 1,473 326,84 1,889 2,218 326.33 1,889 1,473 326,84 1,889 2,218 326.35 1,889 1,503 326,86 1,889 2,232 326.36 1,889 1,517 326,87 1,889 2,253 326.37 1,889 1,517 326,87 1,889 2,253 326.37 1,889 1,517 326,87 1,889 2,253 326.38 1,889 1,517 326,87 1,889 2,273 326,37 1,889 1,561 326,90 1,889 2,301 326,39 1,889 1,561 326,90 1,889 2,301 326,40 1,889 1,561 326,90 1,889 2,301 326,40 1,889 1,561 326,90 1,889 2,301 326,40 1,889 1,561 326,90 1,889 2,301 326,40 1,889 1,561 326,90 1,889 2,301 326,40 1,889 1,561 326,90 1,889 2,301 326,40 1,889 1,561 326,90 1,889 2,301 326,40 1,889 1,561 326,90 1,889 2,301 326,40 1,889 1,561 326,90 1,889 2,301 326,41 1,889 1,605 326,93 1,889 2,341 326,40 1,889 1,605 326,93 1,889 2,341 326,40 1,889 1,605 326,93 1,889 2,341 326,40 1,889 1,605 326,93 1,889 2,341 326,40 1,889 1,605 326,96 1,889 2,327 326,41 1,889 1,605 326,96 1,889 2,327 326,41 1,889 1,605 326,96 1,889 2,341 326,40 1,889 1,605 326,96 1,889 2,342 326,43 1,889 1,605 326,96 1,889 2,342 326,43 1,889 1,604 326,97 1,889 2,449 326,47 1,889 1,693 326,96 1,889 2,449 326,50 1,889 1,790 327,00 1,889 2,449 326,50 1,889 1,790 327,00 1,889 2,455 326,51 1,889 1,780 327,00 1,889 2,555 326,55 1,889 1,780 327,00 1,889 2,555 326,56 1,889 1,890 327,00 1,889 2,555 326,56 1,889 1,890 327,00 1,889 2,555 326,56 1,889 1,890 327,00 1,889 2,555 326,56 1,889 1,890 327,00 1,889 2,555 326,50 1,889 1,780 327,00 1,889 2,555 326,50 1,889 1,780 327,00 1,889 2,555 326,50 1,889 1,890 327,00 1,889 2,555 326,50 1,889 1,890 327,00 1,889 2,555 326,50 1,889 1,890 327,14 1,889 2,564							
326.23 1,889 1,340 326.75 1,889 2,093 326.24 1,889 1,369 326.76 1,889 2,107 326.25 1,889 1,369 326.77 1,889 2,121 326.26 1,889 1,369 326.77 1,889 2,135 326.26 1,889 1,384 326.78 1,889 2,135 326.27 1,889 1,384 326.78 1,889 2,138 326.27 1,889 1,444 326.80 1,889 2,162 326.29 1,889 1,449 326.81 1,889 2,176 326.30 1,889 1,444 326.82 1,889 2,176 326.30 1,889 1,444 326.82 1,889 2,190 326.31 1,889 1,448 326.83 1,889 2,204 326.32 1,889 1,473 326.84 1,889 2,218 326.33 1,889 1,488 326.85 1,889 2,218 326.33 1,889 1,488 326.85 1,889 2,232 326.34 1,889 1,503 326.86 1,889 2,245 326.36 1,889 1,517 326.87 1,889 2,259 326.36 1,889 1,517 326.87 1,889 2,259 326.36 1,889 1,547 326.89 1,889 2,273 326.37 1,889 1,547 326.89 1,889 2,273 326.39 1,889 1,561 326.90 1,889 2,314 326.40 1,889 1,561 326.90 1,889 2,314 326.40 1,889 1,561 326.90 1,889 2,314 326.40 1,889 1,605 326.91 1,889 2,341 326.40 1,889 1,605 326.93 1,889 2,341 326.40 1,889 1,605 326.93 1,889 2,341 326.40 1,889 1,605 326.93 1,889 2,341 326.40 1,889 1,605 326.93 1,889 2,341 326.40 1,889 1,605 326.93 1,889 2,341 326.40 1,889 1,605 326.93 1,889 2,341 326.40 1,889 1,605 326.94 1,889 2,368 326.44 1,889 1,605 326.95 1,889 2,366 326.44 1,889 1,605 326.95 1,889 2,366 326.44 1,889 1,605 326.95 1,889 2,366 326.44 1,889 1,605 326.95 1,889 2,366 326.44 1,889 1,605 326.96 1,889 2,341 326.40 1,889 1,605 326.96 1,889 2,341 326.40 1,889 1,605 326.96 1,889 2,366 326.44 1,889 1,605 326.96 1,889 2,366 326.44 1,889 1,605 326.96 1,889 2,366 326.44 1,889 1,605 326.96 1,889 2,366 326.44 1,889 1,605 326.96 1,889 2,366 326.44 1,889 1,605 326.96 1,889 2,366 326.44 1,889 1,605 326.96 1,889 2,366 326.44 1,889 1,605 326.96 1,889 2,366 326.45 1,889 1,605 326.96 1,889 2,366 326.46 1,889 1,605 326.96 1,889 2,366 326.46 1,889 1,707 326.87 1,889 2,366 326.46 1,889 1,707 326.87 1,889 2,462 326.55 1,889 1,765 327.04 1,889 2,462 326.55 1,889 1,765 327.04 1,889 2,456 326.55 1,889 1,765 327.04 1,889 2,456 326.55 1,889 1,780 327.05 1,889 2,456 326.56 1,889 1,780 327.05 1,889 2,555 326.56 1,889 1,890 327.10 1,889							
326.24 1.889 1.355 326.76 1.889 2.107 326.25 1.889 1.369 326.77 1.889 2.121 326.26 1.889 1.384 326.78 1.889 2.135 326.27 1.889 1.399 326.79 1.889 2.148 326.28 1.889 1.414 326.80 1.889 2.166 326.29 1.889 1.429 326.81 1.889 2.176 326.30 1.889 1.444 326.82 1.889 2.176 326.31 1.889 1.444 326.82 1.889 2.190 326.31 1.889 1.448 326.82 1.889 2.190 326.31 1.889 1.488 326.83 1.889 2.204 326.32 1.889 1.473 326.84 1.889 2.218 326.33 1.889 1.488 326.85 1.889 2.218 326.34 1.889 1.503 326.86 1.889 2.245 326.35 1.889 1.503 326.86 1.889 2.259 326.36 1.889 1.551 326.88 1.889 2.259 326.36 1.889 1.551 326.88 1.889 2.273 326.37 1.889 1.547 326.89 1.889 2.273 326.39 1.889 1.561 326.90 1.889 2.300 326.39 1.889 1.561 326.90 1.889 2.300 326.39 1.889 1.561 326.90 1.889 2.300 326.40 1.889 1.551 326.92 1.889 2.314 326.40 1.889 1.501 326.92 1.889 2.314 326.40 1.889 1.605 326.93 1.889 2.327 326.41 1.889 1.605 326.93 1.889 2.341 326.42 1.889 1.604 326.97 1.889 2.368 326.44 1.889 1.604 326.97 1.889 2.368 326.45 1.889 1.604 326.97 1.889 2.355 326.46 1.889 1.693 326.96 1.889 2.395 326.47 1.889 1.604 326.97 1.889 2.395 326.48 1.889 1.604 326.97 1.889 2.395 326.49 1.889 1.604 326.97 1.889 2.395 326.40 1.889 1.603 326.96 1.889 2.395 326.41 1.889 1.604 326.97 1.889 2.395 326.45 1.889 1.604 326.97 1.889 2.395 326.46 1.889 1.693 326.96 1.889 2.395 326.47 1.889 1.693 326.96 1.889 2.395 326.48 1.889 1.707 327.00 1.889 2.395 326.49 1.889 1.707 327.00 1.889 2.422 326.48 1.889 1.707 327.00 1.889 2.422 326.50 1.889 1.736 327.05 1.889 2.422 326.51 1.889 1.765 327.04 1.889 2.455 326.57 1.889 1.780 327.07 1.889 2.555 326.56 1.889 1.89 1.780 327.07 1.889 2.555 326.57 1.889 1.889 1.866 327.11 1.889 2.551 326.60 1.889 1.889 1.880 327.10 1.889 2.552 326.61 1.889 1.889 1.880 327.10 1.889 2.555 326.62 1.889 1.889 1.885 327.13 1.889 2.564							
326.25 1,889 1,369 326.77 1,889 2,121 326.26 1,889 1,389 326.77 1,889 2,148 326.27 1,889 1,389 326.79 1,889 2,148 326.28 1,889 1,414 326.80 1,889 2,162 326.29 1,889 1,429 326.81 1,889 2,176 326.30 1,889 1,444 326.82 1,889 2,190 326.31 1,889 1,458 326.83 1,889 2,204 326.32 1,889 1,458 326.83 1,889 2,204 326.33 1,889 1,488 326.85 1,889 2,232 326.34 1,889 1,503 326.86 1,889 2,232 326.34 1,889 1,503 326.86 1,889 2,245 326.36 1,889 1,517 326.87 1,889 2,273 326.37 1,889 1,517 326.87 1,889 2,273 326.37 1,889 1,547 326.89 1,889 2,273 326.36 1,889 1,547 326.89 1,889 2,273 326.39 1,889 1,551 326.90 1,889 2,300 326.40 1,889 1,551 326.90 1,889 2,341 326.40 1,889 1,551 326.92 1,889 2,341 326.41 1,889 1,605 326.93 1,889 2,341 326.44 1,889 1,605 326.93 1,889 2,341 326.44 1,889 1,605 326.93 1,889 2,341 326.44 1,889 1,605 326.93 1,889 2,341 326.44 1,889 1,605 326.93 1,889 2,341 326.44 1,889 1,605 326.93 1,889 2,341 326.44 1,889 1,605 326.93 1,889 2,341 326.44 1,889 1,605 326.93 1,889 2,341 326.44 1,889 1,605 326.93 1,889 2,341 326.44 1,889 1,605 326.93 1,889 2,341 326.44 1,889 1,605 326.93 1,889 2,341 326.44 1,889 1,605 326.93 1,889 2,341 326.44 1,889 1,605 326.93 1,889 2,341 326.44 1,889 1,605 326.96 1,889 2,368 326.44 1,889 1,605 326.96 1,889 2,368 326.44 1,889 1,605 326.96 1,889 2,362 326.55 1,889 2,365 326.46 1,889 1,605 326.96 1,889 2,365 326.47 1,889 1,605 326.96 1,889 2,362 326.56 1,889 1,765 327.00 1,889 2,422 326.48 1,889 1,765 327.00 1,889 2,422 326.50 1,889 1,751 327.00 1,889 2,422 326.50 1,889 1,751 327.00 1,889 2,422 326.55 1,889 1,780 327.00 1,889 2,452 326.55 1,889 1,780 327.00 1,889 2,452 326.56 1,889 1,780 327.00 1,889 2,452 326.56 1,889 1,780 327.00 1,889 2,452 326.56 1,889 1,780 327.00 1,889 2,452 326.56 1,889 1,780 327.00 1,889 2,452 326.56 1,889 1,780 327.00 1,889 2,452 326.56 1,889 1,780 327.00 1,889 2,452 326.56 1,889 1,780 327.00 1,889 2,555 326.56 1,889 1,890 327.07 1,889 2,555 326.56 1,889 1,890 327.10 1,889 2,555 326.56 1,889 1,890 327.11 1,889 2,561 326.57 1,889 1,860 327.11 1,889 2,561 326.56 1,889							
326.26 1,889 1,384 326.78 1,889 2,135 326.27 1,889 1,399 326.79 1,889 2,148 326.28 1,889 1,414 326.80 1,889 2,162 326.29 1,889 1,444 326.80 1,889 2,176 326.30 1,889 1,444 326.82 1,889 2,190 326.31 1,889 1,458 326.83 1,889 2,190 326.31 1,889 1,458 326.83 1,889 2,218 326.32 1,889 1,473 326.84 1,889 2,218 326.33 1,889 1,488 326.85 1,889 2,232 326.34 1,889 1,503 326.86 1,889 2,245 326.35 1,889 1,517 326.87 1,889 2,245 326.35 1,889 1,517 326.87 1,889 2,273 326.37 1,889 1,517 326.87 1,889 2,273 326.37 1,889 1,551 326.89 1,889 2,273 326.37 1,889 1,561 326.90 1,889 2,273 326.34 1,889 1,561 326.90 1,889 2,314 326.40 1,889 1,561 326.90 1,889 2,314 326.40 1,889 1,561 326.90 1,889 2,314 326.40 1,889 1,561 326.90 1,889 2,327 326.41 1,889 1,605 326.93 1,889 2,327 326.41 1,889 1,605 326.93 1,889 2,341 326.42 1,889 1,605 326.93 1,889 2,341 326.42 1,889 1,605 326.93 1,889 2,355 326.43 1,889 1,605 326.95 1,889 2,355 326.44 1,889 1,605 326.95 1,889 2,368 326.44 1,889 1,605 326.95 1,889 2,368 326.44 1,889 1,635 326.95 1,889 2,368 326.44 1,889 1,635 326.95 1,889 2,368 326.45 1,889 1,635 326.95 1,889 2,368 326.46 1,889 1,635 326.97 1,889 2,368 326.46 1,889 1,635 326.97 1,889 2,368 326.46 1,889 1,636 326.97 1,889 2,368 326.47 1,889 1,636 326.97 1,889 2,349 326.46 1,889 1,638 326.97 1,889 2,449 326.50 1,889 1,751 327.00 1,889 2,449 326.50 1,889 1,751 327.00 1,889 2,449 326.55 1,889 1,751 327.00 1,889 2,449 326.55 1,889 1,751 327.00 1,889 2,449 326.55 1,889 1,751 327.00 1,889 2,452 326.55 1,889 1,751 327.00 1,889 2,452 326.55 1,889 1,751 327.00 1,889 2,452 326.55 1,889 1,750 327.00 1,889 2,452 326.55 1,889 1,751 327.00 1,889 2,452 326.55 1,889 1,751 327.00 1,889 2,555 326.55 1,889 1,899 3,700 1,889 2,555 326.56 1,889 1,899 1,751 327.00 1,889 2,555 326.56 1,889 1,899 3,700 1,889 2,555 326.56 1,889 1,899 3,700 1,889 2,555 326.56 1,889 1,899 3,751 327.00 1,889 2,555 326.56 1,889 1,899 3,751 327.00 1,889 2,555 326.56 1,889 1,899 3,751 327.10 1,889 2,556 326.56 1,889 1,899 3,751 327.10 1,889 2,556 326.56 1,889 1,899 3,751 327.10 1,889 2,564							
326.27 1,889 1,399 326.79 1,889 2,148 326.28 1,889 1,414 326.80 1,889 2,162 326.29 1,889 1,444 326.81 1,889 2,176 326.30 1,889 1,444 326.82 1,889 2,190 326.31 1,889 1,458 326.83 1,889 2,204 326.32 1,889 1,458 326.83 1,889 2,218 326.33 1,889 1,488 326.85 1,889 2,218 326.33 1,889 1,488 326.85 1,889 2,218 326.35 1,889 1,503 326.86 1,889 2,252 326.35 1,889 1,503 326.86 1,889 2,255 326.36 1,889 1,517 326.87 1,889 2,259 326.36 1,889 1,524 326.89 1,889 2,273 326.37 1,889 1,557 326.89 1,889 2,273 326.38 1,889 1,561 326.90 1,889 2,300 326.39 1,889 1,576 326.91 1,889 2,314 326.40 1,889 1,576 326.91 1,889 2,314 326.40 1,889 1,576 326.91 1,889 2,341 326.41 1,889 1,605 326.93 1,889 2,341 326.42 1,889 1,605 326.93 1,889 2,341 326.44 1,889 1,605 326.93 1,889 2,341 326.44 1,889 1,620 326.94 1,889 2,355 326.43 1,889 1,635 326.95 1,889 2,355 326.44 1,889 1,635 326.95 1,889 2,368 326.47 1,889 1,636 326.96 1,889 2,368 326.47 1,889 1,664 326.97 1,889 2,368 326.47 1,889 1,693 326.96 1,889 2,368 326.46 1,889 1,693 326.96 1,889 2,362 326.47 1,889 1,693 326.99 1,889 2,422 326.48 1,889 1,707 327.00 1,889 2,422 326.49 1,889 1,736 327.00 1,889 2,435 326.50 1,889 1,736 327.00 1,889 2,449 326.50 1,889 1,736 327.00 1,889 2,449 326.50 1,889 1,736 327.00 1,889 2,449 326.55 1,889 1,765 327.00 1,889 2,456 326.55 1,889 1,765 327.00 1,889 2,456 326.55 1,889 1,760 327.00 1,889 2,456 326.55 1,889 1,780 327.00 1,889 2,456 326.55 1,889 1,780 327.00 1,889 2,456 326.55 1,889 1,780 327.00 1,889 2,456 326.55 1,889 1,780 327.00 1,889 2,555 326.56 1,889 1,889 1,780 327.00 1,889 2,555 326.57 1,889 1,890 327.10 1,889 2,556 326.58 1,889 1,890 327.10 1,889 2,556 326.59 1,889 1,890 327.10 1,889 2,556 326.60 1,889 1,890 327.11 1,889 2,561 326.61 1,889 1,890 327.12 1,889 2,561 326.62 1,889 1,909 327.14 1,889 2,564 40lume 326.64 1,889 1,909 327.15 1,889 2,664							
326.28							
326.29 1,889 1,429 326.81 1,889 2,176 326.30 1,889 1,444 326.82 1,889 2,190 326.31 1,889 1,458 326.83 1,889 2,204 326.32 1,889 1,473 326.84 1,889 2,218 326.33 1,889 1,488 326.85 1,889 2,231 326.34 1,889 1,503 326.86 1,889 2,232 326.35 1,889 1,517 326.87 1,889 2,259 326.36 1,889 1,551 326.87 1,889 2,259 326.36 1,889 1,551 326.89 1,889 2,273 326.37 1,889 1,551 326.90 1,889 2,300 326.38 1,889 1,561 326.90 1,889 2,300 326.39 1,889 1,576 326.91 1,889 2,314 326.40 1,889 1,576 326.91 1,889 2,314 326.41 1,889 1,591 326.92 1,889 2,341 326.42 1,889 1,605 326.93 1,889 2,341 326.44 1,889 1,605 326.93 1,889 2,341 326.45 1,889 1,620 326.94 1,889 2,355 326.44 1,889 1,635 326.95 1,889 2,368 326.45 1,889 1,649 326.96 1,889 2,382 326.46 1,889 1,664 326.97 1,889 2,382 326.47 1,889 1,664 326.97 1,889 2,395 326.48 1,889 1,678 326.98 1,889 2,492 326.49 1,889 1,707 327.00 1,889 2,492 326.49 1,889 1,707 327.00 1,889 2,492 326.49 1,889 1,707 327.00 1,889 2,492 326.49 1,889 1,707 327.00 1,889 2,492 326.50 1,889 1,707 327.00 1,889 2,492 326.51 1,889 1,707 327.00 1,889 2,492 326.55 1,889 1,707 327.00 1,889 2,492 326.50 1,889 1,707 327.00 1,889 2,495 326.51 1,889 1,707 327.00 1,889 2,495 326.52 1,889 1,766 327.04 1,889 2,495 326.55 1,889 1,766 327.04 1,889 2,499 326.57 1,889 1,786 327.00 1,889 2,495 326.55 1,889 1,766 327.04 1,889 2,499 326.57 1,889 1,766 327.00 1,889 2,465 326.55 1,889 1,766 327.00 1,889 2,465 326.55 1,889 1,766 327.00 1,889 2,455 326.56 1,889 1,780 327.05 1,889 2,555 326.56 1,889 1,890 327.07 1,889 2,555 326.56 1,889 1,889 3,700 327.07 1,889 2,555 326.56 1,889 1,866 327.11 1,889 2,555 326.56 1,889 1,895 327.13 1,889 2,556 326.57 1,889 1,866 327.11 1,889 2,551 326.60 1,889 1,895 327.13 1,889 2,551 326.61 1,889 1,993 327.15 1,889 2,564 70lume 326.64 1,889 1,993 327.15 1,889 2,607							
326.30							
326.31 1,889 1,458 326.83 1,889 2,204 326.32 1,889 1,473 326.84 1,889 2,218 326.33 1,889 1,488 326.85 1,889 2,232 326.34 1,889 1,503 326.86 1,889 2,245 326.35 1,889 1,517 326.87 1,889 2,259 326.36 1,889 1,517 326.87 1,889 2,273 326.37 1,889 1,547 326.89 1,889 2,273 326.37 1,889 1,561 326.90 1,889 2,206 326.38 1,889 1,561 326.90 1,889 2,300 326.39 1,889 1,576 326.91 1,889 2,314 326.40 1,889 1,591 326.92 1,889 2,314 326.42 1,889 1,605 326.93 1,889 2,341 326.42 1,889 1,605 326.93 1,889 2,341 326.42 1,889 1,620 326.94 1,889 2,355 326.43 1,889 1,635 326.95 1,889 2,382 326.44 1,889 1,649 326.96 1,889 2,382 326.44 1,889 1,664 326.97 1,889 2,382 326.45 1,889 1,664 326.97 1,889 2,382 326.46 1,889 1,664 326.97 1,889 2,395 326.46 1,889 1,664 326.97 1,889 2,409 326.47 1,889 1,678 326.98 1,889 2,409 326.47 1,889 1,678 326.98 1,889 2,449 326.96 1,889 2,449 326.50 1,889 1,707 327.00 1,889 2,449 326.50 1,889 1,707 327.00 1,889 2,449 326.50 1,889 1,722 327.01 1,889 2,449 326.50 1,889 1,736 327.02 1,889 2,449 326.50 1,889 1,751 327.03 1,889 2,449 326.50 1,889 1,751 327.03 1,889 2,449 326.50 1,889 1,751 327.03 1,889 2,452 326.51 1,889 1,765 327.04 1,889 2,452 326.55 1,889 1,765 327.04 1,889 2,452 326.55 1,889 1,765 327.04 1,889 2,555 326.55 1,889 1,860 327.07 1,889 2,555 326.56 1,889 1,893 327.07 1,889 2,555 326.56 1,889 1,860 327.10 1,889 2,555 326.56 1,889 1,860 327.10 1,889 2,555 326.56 1,889 1,860 327.10 1,889 2,555 326.56 1,889 1,860 327.11 1,889 2,555 326.60 1,889 1,860 327.11 1,889 2,555 326.60 1,889 1,860 327.11 1,889 2,555 326.60 1,889 1,860 327.11 1,889 2,555 326.60 1,889 1,860 327.11 1,889 2,555 326.60 1,889 1,860 327.12 1,889 2,555 326.60 1,889 1,860 327.12 1,889 2,555 326.60 1,889 1,895 327.13 1,889 2,555 326.60 1,889 1,895 327.14 1,889 2,554 326.60 1,889 1,895 327.14 1,889 2,554 326.60 1,889 1,895 327.15 1,889 2,555 326.60 1,889 1,895 327.11 1,889 2,555 326.60 1,889 1,895 327.11 1,889 2,554 326.60 1,889 1,895 327.11 1,889 2,554 326.60 1,889 1,895 327.11 1,889 2,554 326.60 1,889 1,895 327.11 1,889 2,554 326.60 1,889							
326.33 1,889 1,488 326.85 1,889 2,232 326.34 1,889 1,503 326.86 1,889 2,245 326.35 1,889 1,517 326.87 1,889 2,273 326.36 1,889 1,532 326.88 1,889 2,273 326.37 1,889 1,547 326.89 1,889 2,236 326.38 1,889 1,547 326.89 1,889 2,300 326.39 1,889 1,561 326.90 1,889 2,300 326.39 1,889 1,576 326.91 1,889 2,314 326.40 1,889 1,591 326.92 1,889 2,341 326.40 1,889 1,605 326.93 1,889 2,341 326.44 1,889 1,605 326.93 1,889 2,341 326.44 1,889 1,605 326.93 1,889 2,341 326.44 1,889 1,662 326.94 1,889 2,368 326.44 1,889 1,635 326.95 1,889 2,368 326.44 1,889 1,649 326.96 1,889 2,382 326.45 1,889 1,649 326.96 1,889 2,395 326.46 1,889 1,678 326.98 1,889 2,499 326.47 1,889 1,664 326.97 1,889 2,395 326.46 1,889 1,678 326.98 1,889 2,409 326.47 1,889 1,693 326.99 1,889 2,492 326.49 1,889 1,707 327.00 1,889 2,455 326.50 1,889 1,722 327.01 1,889 2,449 326.50 1,889 1,722 327.01 1,889 2,449 326.50 1,889 1,765 327.02 1,889 2,452 326.51 1,889 1,765 327.04 1,889 2,449 326.55 1,889 1,765 327.04 1,889 2,452 326.55 1,889 1,780 327.05 1,889 2,452 326.55 1,889 1,780 327.05 1,889 2,452 326.56 1,889 1,780 327.05 1,889 2,555 326.58 1,889 1,823 327.06 1,889 2,555 326.58 1,889 1,823 327.07 1,889 2,555 326.56 1,889 1,899 327.07 1,889 2,555 326.56 1,889 1,899 327.07 1,889 2,555 326.56 1,889 1,823 327.00 1,889 2,555 326.56 1,889 1,823 327.00 1,889 2,555 326.56 1,889 1,823 327.00 1,889 2,555 326.56 1,889 1,899 327.07 1,889 2,555 326.56 1,889 1,899 327.07 1,889 2,555 326.56 1,889 1,899 327.07 1,889 2,555 326.56 1,889 1,899 327.07 1,889 2,555 326.56 1,889 1,899 327.07 1,889 2,555 326.56 1,889 1,899 327.07 1,889 2,555 326.56 1,889 1,899 327.07 1,889 2,555 326.56 1,889 1,899 327.07 1,889 2,555 326.56 1,889 1,899 327.07 1,889 2,555 326.56 1,889 1,899 327.07 1,889 2,555 326.56 1,889 1,899 327.07 1,889 2,555 326.56 1,889 1,899 327.07 1,889 2,555 326.56 1,889 1,899 327.07 1,889 2,555 326.56 1,889 1,899 327.07 1,889 2,556 326.56 1,889 1,899 327.17 1,889 2,554 326.60 1,889 1,889 327.11 1,889 2,564 326.61 1,889 1,999 327.14 1,889 2,634 40000000000000000000000000000000		326.31		1,458	326.83		
326.34 1,889 1,503 326.86 1,889 2,245 326.35 1,889 1,517 326.87 1,889 2,259 326.36 1,889 1,517 326.87 1,889 2,259 326.36 1,889 1,547 326.88 1,889 2,273 326.37 1,889 1,547 326.89 1,889 2,286 326.38 1,889 1,561 326.90 1,889 2,300 326.39 1,889 1,576 326.91 1,889 2,314 326.40 1,889 1,551 326.92 1,889 2,341 326.42 1,889 1,605 326.93 1,889 2,341 326.42 1,889 1,605 326.93 1,889 2,341 326.42 1,889 1,620 326.94 1,889 2,355 326.43 1,889 1,635 326.95 1,889 2,368 326.44 1,889 1,635 326.95 1,889 2,368 326.44 1,889 1,649 326.96 1,889 2,395 326.46 1,889 1,664 326.97 1,889 2,395 326.46 1,889 1,664 326.97 1,889 2,499 326.47 1,889 1,693 326.99 1,889 2,422 326.48 1,889 1,678 326.99 1,889 2,422 326.48 1,889 1,707 327.00 1,889 2,449 326.50 1,889 1,722 327.01 1,889 2,449 326.50 1,889 1,722 327.01 1,889 2,449 326.50 1,889 1,756 327.02 1,889 2,449 326.50 1,889 1,765 327.02 1,889 2,462 326.51 1,889 1,765 327.02 1,889 2,462 326.55 1,889 1,765 327.04 1,889 2,455 326.55 1,889 1,765 327.04 1,889 2,456 326.55 1,889 1,780 327.05 1,889 2,555 326.56 1,889 1,837 327.06 1,889 2,552 326.56 1,889 1,837 327.06 1,889 2,555 326.56 1,889 1,837 327.09 1,889 2,555 326.56 1,889 1,837 327.00 1,889 2,555 326.56 1,889 1,830 327.07 1,889 2,555 326.56 1,889 1,830 327.07 1,889 2,556 326.55 1,889 1,830 327.07 1,889 2,556 326.55 1,889 1,837 327.09 1,889 2,555 326.56 1,889 1,837 327.09 1,889 2,555 326.66 1,889 1,866 327.11 1,889 2,556 326.61 1,889 1,866 327.11 1,889 2,556 326.60 1,889 1,866 327.11 1,889 2,551 326.60 1,889 1,866 327.11 1,889 2,551 326.60 1,889 1,866 327.11 1,889 2,551 326.61 1,889 1,866 327.11 1,889 2,551 326.62 1,889 1,866 327.11 1,889 2,551 326.66 1,889 1,866 327.11 1,889 2,551 326.66 1,889 1,809 327.15 1,889 2,564 326.61 1,889 1,809 327.15 1,889 2,564 326.61 1,889 1,809 327.15 1,889 2,564 326.61 1,889 1,895 327.15 1,889 2,564 326.61 1,889 1,909 327.14 1,889 2,564 326.61 1,889 1,909 327.14 1,889 2,664 326.61 1,889 1,923 327.15 1,889 2,664 326.61 1,889 1,923 327.15 1,889 2,664 326.61 1,889 1,923 327.15 1,889 2,664 326.61 1,889 1,923 327.15 1,889				1,473	326.84	1,889	
326.35		326.33	1,889	1,488	326.85	1,889	2,232
326.36							
326.37							
326.38							
326.39							
326.40 1,889 1,591 326.92 1,889 2,327 326.41 1,889 1,605 326.93 1,889 2,341 326.42 1,889 1,620 326.94 1,889 2,355 326.43 1,889 1,635 326.95 1,889 2,368 326.44 1,889 1,664 326.96 1,889 2,382 326.45 1,889 1,664 326.97 1,889 2,395 326.46 1,889 1,678 326.98 1,889 2,409 326.47 1,889 1,693 326.99 1,889 2,422 326.48 1,889 1,707 327.00 1,889 2,435 326.49 1,889 1,722 327.01 1,889 2,449 326.50 1,889 1,751 327.02 1,889 2,462 326.51 1,889 1,765 327.02 1,889 2,476 326.52 1,889 1,765 327.04 1,889 2,502 326.54 1,889 1,780 327.05 1,889 <							
326.41 1,889 1,605 326.93 1,889 2,341 326.42 1,889 1,620 326.94 1,889 2,355 326.43 1,889 1,635 326.95 1,889 2,368 326.44 1,889 1,649 326.96 1,889 2,382 326.45 1,889 1,664 326.97 1,889 2,395 326.46 1,889 1,678 326.98 1,889 2,409 326.47 1,889 1,693 326.99 1,889 2,422 326.48 1,889 1,707 327.00 1,889 2,435 326.49 1,889 1,722 327.01 1,889 2,449 326.50 1,889 1,751 327.02 1,889 2,462 326.51 1,889 1,765 327.04 1,889 2,489 326.52 1,889 1,780 327.05 1,889 2,502 326.54 1,889 1,780 327.05 1,889 2,515 326.55 1,889 1,809 327.07 1,889 <							
326.42 1,889 1,620 326.94 1,889 2,355 326.43 1,889 1,635 326.95 1,889 2,368 326.44 1,889 1,649 326.96 1,889 2,382 326.45 1,889 1,664 326.97 1,889 2,395 326.46 1,889 1,678 326.98 1,889 2,409 326.47 1,889 1,693 326.99 1,889 2,422 326.48 1,889 1,707 327.00 1,889 2,435 326.49 1,889 1,722 327.01 1,889 2,449 326.50 1,889 1,722 327.01 1,889 2,449 326.50 1,889 1,736 327.02 1,889 2,462 326.51 1,889 1,751 327.03 1,889 2,476 326.52 1,889 1,765 327.04 1,889 2,489 326.53 1,889 1,765 327.04 1,889 2,489 326.54 1,889 1,780 327.05 1,889 2,502 326.54 1,889 1,794 327.05 1,889 2,502 326.55 1,889 1,809 327.07 1,889 2,515 326.55 1,889 1,809 327.07 1,889 2,552 326.56 1,889 1,823 327.08 1,889 2,552 326.56 1,889 1,823 327.08 1,889 2,552 326.56 1,889 1,823 327.08 1,889 2,555 326.58 1,889 1,852 327.10 1,889 2,555 326.59 1,889 1,852 327.10 1,889 2,555 326.60 1,889 1,866 327.11 1,889 2,551 326.60 1,889 1,866 327.11 1,889 2,551 326.61 1,889 1,866 327.11 1,889 2,551 326.62 1,889 1,890 327.12 1,889 2,551 326.62 1,889 1,890 327.12 1,889 2,568 326.61 1,889 1,890 327.12 1,889 2,568 326.61 1,889 1,890 327.12 1,889 2,564 326.62 1,889 1,909 327.14 1,889 2,561 Recharge Volume 326.64 1,889 1,923 327.15 1,889 2,634 Volume 326.64 1,889 1,923 327.16 1,889 2,634							
326.43 1,889 1,635 326.95 1,889 2,368 326.44 1,889 1,649 326.96 1,889 2,382 326.45 1,889 1,664 326.97 1,889 2,395 326.46 1,889 1,678 326.98 1,889 2,409 326.47 1,889 1,693 326.99 1,889 2,422 326.48 1,889 1,707 327.00 1,889 2,435 326.49 1,889 1,722 327.01 1,889 2,449 326.50 1,889 1,736 327.02 1,889 2,462 326.51 1,889 1,751 327.03 1,889 2,476 326.52 1,889 1,765 327.04 1,889 2,489 326.53 1,889 1,765 327.04 1,889 2,489 326.54 1,889 1,780 327.05 1,889 2,502 326.54 1,889 1,794 327.06 1,889 2,502 326.55 1,889 1,809 327.07 1,889 2,515 326.55 1,889 1,809 327.07 1,889 2,529 326.56 1,889 1,823 327.08 1,889 2,529 326.56 1,889 1,823 327.08 1,889 2,555 326.58 1,889 1,823 327.09 1,889 2,555 326.58 1,889 1,825 327.10 1,889 2,555 326.59 1,889 1,866 327.11 1,889 2,581 326.60 1,889 1,866 327.11 1,889 2,581 326.61 1,889 1,895 327.13 1,889 2,594 Recharge 326.63 1,889 1,909 327.14 1,889 2,621 Recharge 326.63 1,889 1,909 327.15 1,889 2,634 Volume 326.64 1,889 1,923 327.15 1,889 2,634							
326.44 1,889 1,649 326.96 1,889 2,382 326.45 1,889 1,664 326.97 1,889 2,395 326.46 1,889 1,678 326.98 1,889 2,409 326.47 1,889 1,693 326.99 1,889 2,422 326.48 1,889 1,707 327.00 1,889 2,435 326.49 1,889 1,722 327.01 1,889 2,449 326.50 1,889 1,736 327.02 1,889 2,462 326.51 1,889 1,751 327.03 1,889 2,462 326.51 1,889 1,765 327.04 1,889 2,489 326.52 1,889 1,765 327.04 1,889 2,489 326.53 1,889 1,765 327.04 1,889 2,489 326.55 1,889 1,780 327.05 1,889 2,502 326.54 1,889 1,794 327.06 1,889 2,502 326.55 1,889 1,809 327.07 1,889 2,515 326.55 1,889 1,809 327.07 1,889 2,529 326.56 1,889 1,823 327.08 1,889 2,529 326.56 1,889 1,823 327.08 1,889 2,555 326.58 1,889 1,852 327.10 1,889 2,555 326.58 1,889 1,852 327.10 1,889 2,555 326.60 1,889 1,866 327.11 1,889 2,581 326.60 1,889 1,880 327.12 1,889 2,594 326.61 1,889 1,895 327.13 1,889 2,504 326.62 1,889 1,909 327.14 1,889 2,621 Recharge Volume 326.64 1,889 1,923 327.15 1,889 2,634 Volume 326.64 1,889 1,923 327.15 1,889 2,634 Volume 326.64 1,889 1,923 327.16 1,889 2,634							
326.45							
326.46 1,889 1,678 326.98 1,889 2,409 326.47 1,889 1,693 326.99 1,889 2,422 326.48 1,889 1,707 327.00 1,889 2,435 326.49 1,889 1,722 327.01 1,889 2,449 326.50 1,889 1,736 327.02 1,889 2,462 326.51 1,889 1,751 327.03 1,889 2,476 326.52 1,889 1,765 327.04 1,889 2,489 326.53 1,889 1,780 327.05 1,889 2,502 326.54 1,889 1,794 327.06 1,889 2,515 326.55 1,889 1,809 327.07 1,889 2,529 326.56 1,889 1,823 327.08 1,889 2,542 326.57 1,889 1,852 327.10 1,889 2,555 326.58 1,889 1,866 327.11 1,889 2,581 326.60 1,889 1,895 327.13 1,889 <							
326.47 1,889 1,693 326.99 1,889 2,422 326.48 1,889 1,707 327.00 1,889 2,435 326.49 1,889 1,722 327.01 1,889 2,449 326.50 1,889 1,736 327.02 1,889 2,462 326.51 1,889 1,751 327.03 1,889 2,476 326.52 1,889 1,765 327.04 1,889 2,489 326.53 1,889 1,780 327.05 1,889 2,502 326.54 1,889 1,794 327.06 1,889 2,515 326.55 1,889 1,809 327.07 1,889 2,529 326.56 1,889 1,823 327.08 1,889 2,542 326.57 1,889 1,837 327.09 1,889 2,555 326.58 1,889 1,866 327.11 1,889 2,581 326.60 1,889 1,880 327.12 1,889 2,594 326.61 1,889 1,999 327.14 1,889 <							
326.48 1,889 1,707 327.00 1,889 2,435 326.49 1,889 1,722 327.01 1,889 2,449 326.50 1,889 1,736 327.02 1,889 2,462 326.51 1,889 1,751 327.03 1,889 2,476 326.52 1,889 1,765 327.04 1,889 2,489 326.53 1,889 1,780 327.05 1,889 2,502 326.54 1,889 1,794 327.06 1,889 2,515 326.55 1,889 1,809 327.07 1,889 2,529 326.56 1,889 1,823 327.08 1,889 2,542 326.57 1,889 1,837 327.09 1,889 2,555 326.58 1,889 1,852 327.10 1,889 2,581 326.69 1,889 1,866 327.11 1,889 2,594 326.61 1,889 1,895 327.13 1,889 2,607 326.62 1,889 1,909 327.14 1,889 <							
326.49 1,889 1,722 327.01 1,889 2,449 326.50 1,889 1,736 327.02 1,889 2,462 326.51 1,889 1,751 327.03 1,889 2,476 326.52 1,889 1,765 327.04 1,889 2,489 326.53 1,889 1,780 327.05 1,889 2,502 326.54 1,889 1,794 327.06 1,889 2,515 326.55 1,889 1,809 327.07 1,889 2,529 326.56 1,889 1,823 327.08 1,889 2,542 326.57 1,889 1,837 327.09 1,889 2,555 326.58 1,889 1,852 327.10 1,889 2,568 326.59 1,889 1,866 327.11 1,889 2,581 326.60 1,889 1,880 327.12 1,889 2,594 326.61 1,889 1,895 327.13 1,889 2,607 326.62 1,889 1,909 327.14 1,889 2,621 Recharge 326.64 1,889 1,923 327.15 1,889 2,647 Volume 326.64 1,							
326.50							
326.52 1,889 1,765 327.04 1,889 2,489 326.53 1,889 1,780 327.05 1,889 2,502 326.54 1,889 1,794 327.06 1,889 2,515 326.55 1,889 1,809 327.07 1,889 2,529 326.56 1,889 1,823 327.08 1,889 2,542 326.57 1,889 1,837 327.09 1,889 2,555 326.58 1,889 1,852 327.10 1,889 2,568 326.59 1,889 1,866 327.11 1,889 2,581 326.60 1,889 1,880 327.12 1,889 2,594 326.61 1,889 1,895 327.13 1,889 2,607 326.62 1,889 1,909 327.14 1,889 2,621 Recharge 326.63 1,889 1,923 327.15 1,889 2,634 Volume 326.64 1,889 1,937 327.16 1,889 2,647		326.50			327.02		
326.53		326.51	1,889	1,751	327.03	1,889	2,476
326.54 1,889 1,794 327.06 1,889 2,515 326.55 1,889 1,809 327.07 1,889 2,529 326.56 1,889 1,823 327.08 1,889 2,542 326.57 1,889 1,837 327.09 1,889 2,555 326.58 1,889 1,852 327.10 1,889 2,568 326.59 1,889 1,866 327.11 1,889 2,581 326.60 1,889 1,880 327.12 1,889 2,594 326.61 1,889 1,895 327.13 1,889 2,607 326.62 1,889 1,909 327.14 1,889 2,621 Recharge 326.63 1,889 1,923 327.15 1,889 2,634 Volume 326.64 1,889 1,937 327.16 1,889 2,647							
326.55 1,889 1,809 327.07 1,889 2,529 326.56 1,889 1,823 327.08 1,889 2,542 326.57 1,889 1,837 327.09 1,889 2,555 326.58 1,889 1,852 327.10 1,889 2,568 326.59 1,889 1,866 327.11 1,889 2,581 326.60 1,889 1,880 327.12 1,889 2,594 326.61 1,889 1,895 327.13 1,889 2,607 326.62 1,889 1,909 327.14 1,889 2,621 Recharge 326.63 1,889 1,923 327.15 1,889 2,634 Volume 326.64 1,889 1,937 327.16 1,889 2,647							
326.56							
326.57 1,889 1,837 327.09 1,889 2,555 326.58 1,889 1,852 327.10 1,889 2,568 326.59 1,889 1,866 327.11 1,889 2,581 326.60 1,889 1,880 327.12 1,889 2,594 326.61 1,889 1,895 327.13 1,889 2,607 326.62 1,889 1,909 327.14 1,889 2,621 Recharge 326.63 1,889 1,923 327.15 1,889 2,634 Volume 326.64 1,889 1,937 327.16 1,889 2,647							
326.58 1,889 1,852 327.10 1,889 2,568 326.59 1,889 1,866 327.11 1,889 2,581 326.60 1,889 1,880 327.12 1,889 2,594 326.61 1,889 1,895 327.13 1,889 2,607 326.62 1,889 1,909 327.14 1,889 2,621 Recharge 326.63 1,889 1,923 327.15 1,889 2,634 Volume 326.64 1,889 1,937 327.16 1,889 2,647							
326.59 1,889 1,866 327.11 1,889 2,581 326.60 1,889 1,880 327.12 1,889 2,594 326.61 1,889 1,895 327.13 1,889 2,607 326.62 1,889 1,909 327.14 1,889 2,621 Recharge 326.63 1,889 1,923 327.15 1,889 2,634 Volume 326.64 1,889 1,937 327.16 1,889 2,647							
326.60 1,889 1,880 327.12 1,889 2,594 326.61 1,889 1,895 327.13 1,889 2,607 326.62 1,889 1,909 327.14 1,889 2,621 Recharge 326.63 1,889 1,923 327.15 1,889 2,634 Volume 326.64 1,889 1,937 327.16 1,889 2,647							
326.61 1,889 1,895 327.13 1,889 2,607 326.62 1,889 1,909 327.14 1,889 2,621 Recharge 326.63 1,889 1,923 327.15 1,889 2,634 Volume 326.64 1,889 1,937 327.16 1,889 2,647							
326.62 1,889 1,909 327.14 1,889 2,621 Recharge 326.63 1,889 1,923 327.15 1,889 2,634 Volume 326.64 1,889 1,937 327.16 1,889 2,647							
Recharge 326.63 1,889 1,923 327.15 1,889 2,634 Volume 326.64 1,889 1,937 327.16 1,889 2,647							
Volume 326.64 1,889 1,937 327.16 1,889 2,647	Recharge						
, , , , , , , , , , , , , , , , , , , ,							
			•			-	

HydroCAD® 10.10-5a s/n 11557 © 2020 HydroCAD Software Solutions LLC

Stage-Area-Storage for Pond INF-105: INF-105 (continued)

Elevation	Surface	Storage	Elevation	Surface	Storage	
(feet)	(sq-ft)	(cubic-feet)	(feet)	(sq-ft)	(cubic-feet)	
347.54	3,941	2,545	348.06	3,941	4,159	
347.55	3,941	2,577	348.07	3,941	4,189	
347.56	3,941	2,608	348.08	3,941	4,219	
347.57	3,941	2,640	348.09	3,941	4,249	
347.58	3,941	2,672	348.10	3,941	4,279	
347.59	3,941	2,704	348.11	3,941	4,309	
347.60	3,941	2,735	348.12	3,941	4,339	
347.61	3,941	2,767	348.13	3,941	4,369	
347.62	3,941	2,799	348.14	3,941	4,398	
347.63	3,941	2,830	348.15	3,941	4,428	
347.64	3,941	2,862	348.16	3,941	4,458	
347.65	3,941	2,894	348.17	3,941	4,487	
347.66	3,941	2,925	348.18	3,941	4,517	
347.67	3,941	2,957	348.19	3,941	4,546	
347.68	3,941	2,988	348.20	3,941	4,576	Recharge
347.69	3,941	3,020	348.21	3,941	4,605	Volume
347.70	3,941	3,051	348.22	3,941	4,634	Provided
347.71	3,941	3,082	348.23	3,941	4,664	Provided
347.72	3,941	3,114	348.24	3,941	4,693	
347.73	3,941	3,145	348.25	3,941	4,722	
347.74	3,941	3,176	348.26	3,941	4,751	
347.75	3,941	3,208	348.27	3,941	4,781	
347.76	3,941	3,239	348.28	3,941	4,810	
347.77	3,941	3,270	348.29	3,941	4,839	
347.78	3,941	3,301	348.30	3,941	4,868	
347.79	3,941	3,332	348.31	3,941	4,896	
347.80	3,941	3,363	348.32	3,941	4,925	
347.81	3,941	3,395	348.33	3,941	4,954	
347.82	3,941	3,426	348.34	3,941	4,983	
347.83	3,941	3,457	348.35	3,941	5,012	
347.84	3,941	3,487	348.36	3,941	5,040	
347.85	3,941	3,518	348.37	3,941	5,069	
347.86	3,941	3,549	348.38	3,941	5,097	
347.87	3,941	3,580	348.39	3,941	5,126	
347.88	3,941	3,611	348.40	3,941	5,154	
347.89	3,941	3,642	348.41	3,941	5,183	
347.90	3,941	3,672	348.42	3,941	5,211	
347.91	3,941	3,703	348.43	3,941	5,239	
347.92	3,941	3,734	348.44	3,941	5,267	
347.93	3,941	3,764	348.45	3,941	5,296	
347.94	3,941	3,795	348.46	3,941	5,324	
347.95	3,941	3,826	348.47	3,941	5,352	
347.96	3,941	3,856	348.48	3,941	5,380	
347.97	3,941	3,887	348.49	3,941	5,408	
347.98	3,941	3,917	348.50	3,941	5,435	
347.99	3,941	3,947	348.51	3,941	5,463	
348.00	3,941	3,978	348.52	3,941	5,491	
348.01	3,941	4,008	348.53	3,941	5,519	
348.02	3,941	4,038	348.54	3,941	5,546	
348.03	3,941	4,069	348.55	3,941	5,574	
348.04	3,941	4,099	348.56	3,941	5,601	
348.05	3,941	4,129	348.57	3,941	5,629	
	5,5	.,0	1 2.5.5.	-,	0,020	

Stage-Area-Storage for Pond INF-106: INF-106 (continued)

Elevati		Storage	Elevation	Surface	Storage
(fe		(cubic-feet)	(feet)	(sq-ft)	(cubic-feet)
355.		2,235	355.93	786	2,491
355.		2,240	355.94	786	2,496
355.		2,245	355.95	786	2,500
355.		2,250	355.96	786	2,505
355.		2,255	355.97	786	2,510
355.		2,260	355.98	786	2,514
355.		2,265	355.99	786	2,519
355.		2,270	356.00	786	2,524
355.		2,275	356.01	786	2,528
355.		2,281	356.02	786	2,533
355.		2,286	356.03	786	2,537
355.		2,291	356.04	786	2,542
355.		2,296	356.05	786	2,547
Recharge 355.		2,301	356.06	786	2,551
Volume 355.		2,306	356.07	786	2,556
Provided 355.		2,311	356.08	786	2,560
355.		2,316	356.09	786	2,565
355.		2,321	356.10	786	2,569
355.		2,326	356.11	786	2,574
355.		2,331	356.12	786	2,578
355.		2,336	356.13	786	2,583
355.		2,341	356.14	786	2,587
355.		2,346	356.15	786	2,592
355.		2,351	356.16	786	2,596
355.		2,356	356.17	786	2,601
355.		2,361	356.18	786	2,605
355.		2,366	356.19	786	2,610
355.		2,370	356.20	786	2,614
355.		2,375	356.21	786	2,618
355.		2,380	356.22	786	2,623
355.		2,385	356.23	786	2,627
355.		2,390	356.24	786	2,631
355.		2,395	356.25	786	2,636
355.		2,400	356.26	786	2,640
355.		2,405	356.27	786	2,644
355.		2,410	356.28	786	2,649
355.		2,414	356.29	786	2,653
355.		2,419	356.30	786	2,657
355.		2,424	356.31	786	2,662
355.		2,429	356.32	786	2,666
355.		2,434	356.33	786	2,670
355.		2,439	356.34	786	2,674
355.		2,443	356.35	786	2,678
355.		2,448	356.36	786	2,683
355.		2,453	356.37	786	2,687
355.		2,458	356.38	786	2,691
355.		2,463	356.39	786	2,695
355.		2,467	356.40	786	2,699
355.		2,472	356.41	786	2,703
355.		2,477	356.42	786	2,707
355.		2,482	356.43	786	2,711
355.	92 786	2,486	356.44	786	2,715
			I		

Prepared by WDA Design Group

Printed 5/3/2021

HydroCAD® 10.10-5a s/n 11557 © 2020 HydroCAD Software Solutions LLC

Stage-Area-Storage for Pond INF-201: INF-201 (continued)

E	Elevation	Surface	Storage	Elevation	Surface	Storage
_	(feet)	(sq-ft)	(cubic-feet)	(feet)	(sq-ft)	(cubic-feet)
	337.24	3,236	2,084	337.76	3,236	3,405
	337.25	3,236	2,110	337.77	3,236	3,429
	337.26	3,236	2,136	337.78	3,236	3,454
	337.27	3,236	2,162	337.79	3,236	3,479
	337.28	3,236	2,188	337.80	3,236	3,503
	337.29	3,236	2,214	337.81	3,236	3,527
	337.30	3,236	2,240	337.82	3,236	3,552
	337.31 337.32	3,236 3,236	2,266 2,292	337.83 337.84	3,236 3,236	3,576 3,601
	337.32	3,236	2,292	337.85	3,236	3,625
	337.34	3,236	2,316	337.86	3,236	3,649
	337.35	3,236	2,344	337.87	3,236	3,673
	337.36	3,236	2,395	337.88	3,236	3,697
	337.37	3,236	2,421	337.89	3,236	3,722
	337.38	3,236	2,447	337.90	3,236	3,746
	337.39	3,236	2,473	337.91	3,236	3,770
	337.40	3,236	2,498	337.92	3,236	3,794
	337.41	3,236	2,524	337.93	3,236	3,818
	337.42	3,236	2,550	337.94	3,236	3,842
	337.43	3,236	2,575	337.95	3,236	3,866
Recharge	337.44	3,236	2,601	337.96	3,236	3,889
Volume	337.45	3,236	2,626	337.97	3,236	3,913
Provided	337.46	3,236	2,652	337.98	3,236	3,937
	337.47	3,236	2,677	337.99	3,236	3,961
	337.48	3,236	2,703	338.00	3,236	3,985
	337.49	3,236	2,728	338.01	3,236	4,008
	337.50	3,236	2,754	338.02	3,236	4,032
	337.51	3,236	2,779	338.03	3,236	4,055
	337.52	3,236	2,805	338.04	3,236	4,079
	337.53	3,236	2,830	338.05	3,236	4,102
	337.54	3,236	2,855	338.06	3,236	4,126
	337.55	3,236	2,881	338.07	3,236	4,149
	337.56	3,236	2,906	338.08	3,236	4,173
	337.57	3,236	2,931	338.09	3,236	4,196
	337.58	3,236	2,956	338.10	3,236	4,219
	337.59	3,236	2,981	338.11	3,236	4,242
	337.60	3,236	3,007	338.12	3,236	4,266
	337.61	3,236	3,032	338.13	3,236	4,289
	337.62	3,236	3,057	338.14	3,236	4,312
	337.63	3,236	3,082	338.15	3,236	4,335
	337.64	3,236	3,107	338.16	3,236	4,358
	337.65	3,236	3,132	338.17	3,236	4,381
	337.66	3,236	3,157	338.18	3,236	4,404
	337.67	3,236	3,182	338.19	3,236	4,427
	337.68	3,236	3,207	338.20	3,236	4,449
	337.69	3,236	3,232	338.21	3,236	4,472
	337.70	3,236	3,256	338.22	3,236	4,495
	337.71	3,236	3,281	338.23	3,236	4,517
	337.72	3,236	3,306 3,331	338.24	3,236	4,540 4,563
	337.73 337.74	3,236 3,236	3,331 3,356	338.25 338.26	3,236 3,236	4,563 4 585
	337.75	3,236 3,236	3,380	338.27	3,236 3,236	4,585 4,608
	331.13	3,230	3,300	330.27	3,230	4,000
				ı		

Prepared by WDA Design Group
HydroCAD® 10.10-5a s/n 11557 © 2020 HydroCAD Software Solutions LLC

Stage-Area-Storage for Pond INF-RF2: INF-RF2 (continued)

E	Elevation	Surface	Storage	Elevation	Surface	Storage
_	(feet)	(sq-ft)	(cubic-feet)	(feet)	(sq-ft)	(cubic-feet)
	335.04	118	66	335.56	118	105
	335.05	118	67	335.57	118	106
	335.06	118	67	335.58	118	107
	335.07	118	68	335.59	118	107
	335.08	118	69	335.60	118	108
	335.09	118	70	335.61	118	109
	335.10	118	71	335.62	118	110
	335.11	118	71	335.63	118	110
	335.12	118	72	335.64	118	111
	335.13	118 118	73 74	335.65	118	112
	335.14		74 74	335.66	118	113 113
	335.15 335.16	118 118	74 75	335.67 335.68	118 118	113
	335.10	118	76 76	335.69	118	115
	335.18	118	70 77	335.70	118	115
	335.19	118	77	335.71	118	116
	335.20	118	78	335.72	118	117
	335.21	118	79	335.73	118	118
	335.22	118	80	335.74	118	118
	335.23	118	80	335.75	118	119
	335.24	118	81	335.76	118	120
	335.25	118	82	335.77	118	120
	335.26	118	83	335.78	118	121
	335.27	118	83	335.79	118	122
	335.28	118	84	335.80	118	123
	335.29	118	85	335.81	118	123
	335.30	118	86	335.82	118	124
	335.31	118	87	335.83	118	125
	335.32	118	87	335.84	118	125
	335.33	118	88	335.85	118	126
	335.34	118	89	335.86	118	127
	335.35	118	90	335.87	118	128
5 .	335.36	118	90	335.88	118	128
Recharge	335.37	118	91	335.89	118	129
Volume	335.38	(118)	92	335.90	118	130
Provided	335.39	118	93	335.91	118	130
	335.40	118	93	335.92	118	131
	335.41	118	94	335.93 335.94	118	132
	335.42 335.43	118 118	95 96	335.94	118 118	133 133
	335.44	118	96 96	335.96	118	134
	335.45	118	90 97	335.97	118	135
	335.46	118	98	335.98	118	135
	335.47	118	99	335.99	118	136
	335.48	118	99	336.00	118	137
	335.49	118	100	336.01	118	137
	335.50	118	101	336.02	118	138
	335.51	118	101	336.03	118	139
	335.52	118	102	336.04	118	140
	335.53	118	103	336.05	118	140
	335.54	118	104	336.06	118	141
	335.55	118	104	336.07	118	142
				I		

Prepared by WDA Design Group
HydroCAD® 10.10-5a s/n 11557 © 2020 HydroCAD Software Solutions LLC

Stage-Area-Storage for Pond INF-RF3: INF-RF3 (continued)

333 04	I	Elevation (feet)	Surface (sq-ft)	Storage (cubic-feet)	Elevation (feet)	Surface (sq-ft)	Storage (cubic-feet)
333.05 118 67 333.57 118 106 333.06 118 67 333.58 118 107 333.08 118 69 333.60 118 108 333.00 118 70 333.61 118 109 333.10 118 71 333.62 118 110 333.11 118 71 333.63 118 110 333.12 118 72 333.64 118 111 333.13 118 73 333.65 118 111 333.15 118 74 333.66 118 111 333.16 118 75 333.66 118 111 333.17 118 74 333.66 118 113 333.17 118 75 333.68 118 113 333.17 118 76 333.69 118 113 333.19 118 77 333.71 118 115 333.19 118 77 333.71 118 115 333.20 118 79 333.72 118 115 333.21 118 79 333.73 118 118 333.22 118 80 333.72 118 118 333.22 118 80 333.74 118 118 333.24 118 81 333.76 118 118 333.25 118 80 333.77 118 118 333.26 118 80 333.77 118 118 333.27 118 80 333.77 118 118 333.29 118 80 333.77 118 118 333.21 118 80 333.77 118 118 333.22 118 80 333.77 118 118 333.24 118 81 333.76 118 119 333.25 118 80 333.77 118 118 333.26 118 80 333.77 118 120 333.37 118 818 333.37 118 818 333.37 118 819 333.38 118 82 333.79 118 122 333.39 118 81 123 333.31 118 87 333.81 118 122 333.37 118 83 333.79 118 122 333.37 118 83 333.79 118 122 333.37 118 83 333.79 118 122 333.38 118 89 333.86 118 122 333.31 118 87 333.81 118 122 333.31 118 87 333.81 118 122 333.32 118 83 333.79 118 123 333.34 118 89 333.86 118 122 333.34 118 89 333.86 118 122 333.35 118 89 333.89 118 128 333.34 118 99 333.90 118 133 333.44 118 99 333.90 118 133 333.45 118 99 333.90 118 133 333.46 118 99 333.90 118 133 333.47 118 99 333.90 118 133 333.47 118 99 333.90 118 133 333.47 118 99 333.90 118 133 333.47 118 99 333.90 118 133 333.47 118 99 333.90 118 133 333.47 118 99 333.90 118 133 333.47 118 99 333.99 118 133 333.47 118 99 333.99 118 133 333.47 118 99 333.99 118 133 333.47 118 99 333.99 118 133 333.40 118 99 333.99 118 133 333.40 118 99 333.99 118 133 333.41 118 99 333.99 118 133 333.41 118 99 333.99 118 133 333.41 118 99 333.99 118 133 333.41 118 99 333.99 118 133 333.41 118 99 333.99 118 133 333.41 118 99 333.99 118 133 333.45 118 101 334.00 118 139 333.46 118 118 101 334.00 118 139 333.50 118 101 334.00 118 139	_						
333.06 118 67 333.58 118 107 333.07 118 68 333.59 118 107 333.08 118 69 333.60 118 108 333.09 118 70 333.61 118 109 333.11 118 71 333.63 118 110 333.11 118 71 333.63 118 110 333.13 118 72 333.64 118 111 333.13 118 74 333.65 118 111 333.15 118 74 333.66 118 113 333.16 118 74 333.66 118 113 333.16 118 75 333.68 118 113 333.17 118 76 333.69 118 115 333.18 118 77 333.70 118 115 333.19 118 77 333.71 118 115 333.20 118 77 333.71 118 116 333.21 118 77 333.71 118 116 333.22 118 89 333.72 118 116 333.22 118 89 333.73 118 118 333.22 118 80 333.74 118 118 333.22 118 80 333.75 118 118 333.22 118 80 333.76 118 118 333.22 118 80 333.76 118 118 333.23 118 80 333.77 118 120 333.25 118 81 333.76 118 120 333.26 118 81 333.76 118 120 333.27 118 81 333.76 118 120 333.28 118 80 333.77 118 120 333.29 118 81 333.76 118 120 333.29 118 81 333.76 118 120 333.30 118 81 333.76 118 120 333.31 118 81 333.76 118 120 333.32 118 81 333.76 118 120 333.33 118 81 333.76 118 120 333.34 118 81 333.76 118 120 333.35 118 81 333.76 118 122 333.31 18 81 333.76 118 122 333.32 118 81 333.76 118 122 333.34 118 81 333.76 118 122 333.35 118 81 333.76 118 122 333.36 118 81 333.76 118 122 333.37 118 81 333.76 118 122 333.38 118 81 333.76 118 122 333.39 118 81 333.76 118 122 333.30 118 81 333.76 118 122 333.31 118 81 333.76 118 122 333.32 118 81 333.76 118 122 333.33 118 81 81 333.76 118 122 333.34 118 89 333.89 118 122 333.35 118 89 333.89 118 122 333.36 118 99 333.89 118 122 333.37 118 99 333.89 118 122 333.38 118 99 333.99 118 133 333.41 118 99 333.99 118 133 333.41 118 99 333.99 118 133 333.41 118 99 333.99 118 133 333.44 118 99 333.99 118 133 333.44 118 99 333.99 118 133 333.49 118 99 333.99 118 133 333.40 118 99 333.99 118 133 333.40 118 99 333.99 118 133 333.40 118 99 333.99 118 133 333.41 118 99 333.99 118 133 333.41 118 99 333.99 118 133 333.41 118 99 333.99 118 133 333.44 118 99 333.99 118 133 333.44 118 99 333.99 118 133 333.45 118 100 334.00 118 133 333.40 118 100 334.00 118 133 333.50 118 100 334.00 118 134							
333.07							
333.08							
333.09							
333.11 118 72 333.63 118 110 333.13 118 111 333.13 118 72 333.64 118 111 333.13 118 73 333.65 1118 112 333.14 118 74 333.66 118 113 333.15 118 74 333.66 118 113 333.16 118 75 333.68 118 113 333.16 118 76 333.69 118 114 333.17 118 76 333.69 118 115 333.19 118 77 333.70 118 115 333.19 118 77 333.71 118 116 333.20 118 78 333.21 118 79 333.73 118 116 333.22 118 80 333.74 118 118 333.22 118 80 333.74 118 118 333.22 118 80 333.74 118 118 333.24 118 81 333.76 118 118 333.26 118 81 333.76 118 119 333.26 118 82 333.77 118 123 333.27 118 83 333.27 118 82 333.78 118 120 333.27 118 83 333.79 118 122 333.27 118 83 333.79 118 122 333.29 118 84 333.80 118 123 333.29 118 86 333.81 118 123 333.30 118 86 333.82 118 123 333.39 118 87 333.84 118 123 333.39 118 87 333.84 118 125 333.31 118 87 333.89 118 122 333.31 118 87 333.89 118 122 333.31 118 87 333.89 118 125 333.34 118 89 333.86 118 125 333.34 118 89 333.86 118 126 333.34 118 89 333.89 118 125 333.34 118 89 333.89 118 125 333.34 118 89 333.89 118 125 333.34 118 90 333.89 118 123 333.44 118 99 333.89 118 128 333.44 118 99 333.99 118 130 333.44 118 99 333.99 118 130 333.44 118 99 333.99 118 133 333.44 118 190 334.00 118 133 333.44 118 190 333.99 118 133 333.44 118 190 333.99 118 133 333.44 118 190 333.99 118 138 333.35 118 100 333.90 118							
333.12 118 73 333.64 118 111 333.15 118 74 333.65 118 112 333.15 118 74 333.66 118 113 333.15 118 74 333.67 118 113 333.15 118 75 333.68 118 114 333.17 118 76 333.69 118 115 333.18 118 77 333.70 118 115 333.19 118 77 333.70 118 115 333.20 118 78 333.72 118 116 333.20 118 79 333.73 118 118 333.21 118 79 333.73 118 118 333.22 118 80 333.72 118 118 333.23 118 80 333.75 118 118 333.24 118 81 333.76 118 120 333.26 118 82 333.77 118 120 333.26 118 83 333.78 118 120 333.27 118 83 333.78 118 121 333.29 118 84 333.80 118 122 333.29 118 85 333.81 118 122 333.30 118 86 333.87 118 123 333.31 118 87 333.81 118 123 333.33 118 87 333.85 118 124 333.31 118 87 333.86 118 124 333.31 118 87 333.86 118 124 333.33 118 87 333.86 118 125 333.34 118 89 333.86 118 126 333.34 118 89 333.86 118 126 333.34 118 90 333.87 118 128 333.34 118 91 333.89 118 128 333.34 118 91 333.89 118 128 333.34 118 91 333.89 118 128 333.34 118 91 333.89 118 129 Volume 333.34 118 91 333.89 118 129 Volume 333.34 118 91 333.89 118 129 333.41 118 99 333.99 118 130 Provided 333.39 118 93 333.91 118 130 Provided 333.34 118 99 333.99 118 130 333.44 118 96 333.99 118 131 333.44 118 99 333.99 118 133 333.44 118 99 333.99 118 133 333.44 118 99 333.99 118 133 333.44 118 99 333.99 118 133 333.44 118 99 333.99 118 131 333.45 118 99 333.99 118 133 333.46 118 99 333.99 118 133 333.47 118 99 333.99 118 133 333.49 118 99 333.99 118 133 333.49 118 99 333.99 118 133 333.40 118 99 333.99 118 133 333.41 118 99 333.99 118 133 333.44 118 99 333.99 118 133 333.44 118 99 333.99 118 133 333.44 118 99 333.99 118 133 333.44 118 99 333.99 118 133 333.44 118 99 333.99 118 133 333.44 118 99 333.99 118 133 333.44 118 99 333.99 118 133 333.44 118 99 333.99 118 133 333.45 118 118 118 118 118 118 118 118 118 11			118	71	333.62	118	110
333.13		333.11	118		333.63	118	110
333.14							
333.15							
333.16							
333.17 118 76 333.69 118 115 333.19 118 77 333.70 118 115 333.19 118 77 333.71 118 116 333.20 118 78 333.72 118 117 333.21 118 79 333.73 118 118 333.22 118 80 333.74 118 118 333.23 118 80 333.74 118 119 333.24 118 81 333.76 118 119 333.25 118 82 333.77 118 120 333.26 118 83 333.79 118 121 333.27 118 83 333.79 118 122 333.28 118 84 333.80 118 122 333.29 118 85 333.81 118 123 333.29 118 87 333.81 118 123 333.31 118 86 333.82 118 124 4333.31 118 87 333.83 118 125 333.32 118 87 333.84 118 125 333.35 118 89 333.86 118 126 8echarge Volume 333.36 118 90 333.87 118 128 8echarge 333.37 118 91 333.89 118 128 Recharge Volume 333.39 118 91 333.89 118 129 Volume 333.30 118 91 333.91 118 129 Volume 333.34 118 91 333.91 118 129 Volume 333.34 118 91 333.91 118 129 333.35 118 90 333.89 118 129 Volume 333.36 118 90 333.89 118 129 Volume 333.37 118 91 333.99 118 129 Volume 333.38 118 99 333.91 118 130 333.41 118 94 333.91 118 130 333.42 118 96 333.94 118 130 333.44 118 96 333.95 118 130 333.45 118 96 333.95 118 130 333.46 118 99 333.90 118 130 333.47 118 99 333.90 118 130 333.48 118 96 333.95 118 133 333.44 118 96 333.95 118 133 333.45 118 99 333.90 118 133 333.45 118 99 333.90 118 133 333.47 118 99 333.90 118 133 333.47 118 99 333.90 118 133 333.48 118 99 333.90 118 133 333.40 118 99 333.90 118 133 333.45 118 99 333.90 118 133 333.46 118 99 333.90 118 133 333.47 118 99 333.90 118 133 333.48 118 99 333.90 118 133 333.49 118 99 333.90 118 133 333.40 118 99 333.90 118 133 333.41 118 96 333.90 118 133 333.42 118 99 333.90 118 133 333.44 118 96 333.90 118 133 333.45 118 99 333.90 118 133 333.46 118 99 333.90 118 133 333.47 118 99 333.90 118 133 333.48 118 99 333.90 118 133 333.49 118 190 333.90 118 133 333.40 118 99 333.90 118 133 333.45 118 100 334.00 118 137 333.50 118 100 334.00 118 137 333.50 118 100 334.00 118 139 333.55 118 100 334.00 118 139							
333.18							
333.19							
333.20							
333.21							
333.22 118 80 333.74 118 118 118 133.32 118 80 333.75 118 119 333.24 118 81 333.76 118 120 333.25 118 82 333.77 118 120 333.26 118 83 333.77 118 120 333.26 118 83 333.78 118 122 333.27 118 83 333.79 118 122 333.28 118 84 333.80 118 123 333.29 118 85 333.81 118 123 333.29 118 86 333.81 118 123 333.30 118 86 333.82 118 124 333.31 118 87 333.83 118 125 333.31 118 87 333.84 118 125 333.32 118 87 333.84 118 125 333.33 118 88 333.85 118 126 333.34 118 89 333.86 118 127 333.35 118 90 333.86 118 128 86 133.39 118 128 87 333.34 118 129 401 118 129 401 118 129 401 118 129 401 118 129 401 118 129 401 118 130 401 118 130 401 118 130 118 130 118 130 118 130 118 130 118 130 118 130 118 130 118 130 118 130 133.40 118 94 333.91 118 130 133.41 118 94 333.91 118 130 133.41 118 94 333.91 118 130 133.41 118 96 333.95 118 131 333.44 118 96 333.95 118 131 333.44 118 96 333.95 118 133 333.44 118 96 333.97 118 131 333.44 118 96 333.97 118 133 333.44 118 96 333.97 118 133 333.44 118 96 333.97 118 133 333.44 118 96 333.97 118 133 333.44 118 96 333.97 118 133 333.44 118 96 333.97 118 133 333.44 118 96 333.97 118 133 333.44 118 96 333.97 118 133 333.45 118 199 333.99 118 133 333.47 118 99 333.99 118 133 333.47 118 99 333.90 118 133 333.47 118 99 333.99 118 133 333.47 118 99 333.99 118 133 333.47 118 99 333.99 118 133 333.47 118 99 333.99 118 133 333.47 118 99 333.99 118 133 333.47 118 99 333.99 118 133 333.47 118 99 333.99 118 133 333.47 118 99 333.99 118 133 333.47 118 99 333.99 118 133 333.47 118 99 333.99 118 133 333.50 118 101 334.00 118 139 333.50 118 101 334.00 118 139 333.50 118 101 334.00 118 139 333.50 118 101 334.00 118 139 333.50 118 100 334.00 118 139 333.50 118 100 334.00 118 139 333.50 118 100 334.00 118 139 333.50 118 100 334.00 118 141							
333.23							
333.24							
333.25							
333.26							
333.27							
333.28							
333.29							
333.30							
333.31							
333.32							
333.33							
333.34							
333.35 118 90 333.87 118 128 333.36 118 90 333.88 118 128 Recharge 333.37 118 91 333.89 118 129 Volume 333.38 118 92 333.90 118 130 Provided 333.39 118 93 333.91 118 130 333.40 118 93 333.92 118 131 333.41 118 94 333.93 118 132 333.42 118 95 333.94 118 133 333.43 118 96 333.95 118 133 333.44 118 96 333.96 118 134 333.45 118 97 333.97 118 135 333.46 118 97 333.99 118 135 333.47 118 98 333.99 118 135 333.49 118 99 334.00 118 137 333.49							
Recharge 333.37 118 91 333.89 118 129 Volume 333.38 (118) 92 333.90 118 130 Provided 333.39 118 93 333.91 118 130 333.40 118 93 333.92 118 131 333.41 118 94 333.93 118 132 333.42 118 95 333.94 118 133 333.43 118 96 333.95 118 133 333.44 118 96 333.96 118 134 333.45 118 97 333.97 118 135 333.46 118 98 333.98 118 135 333.47 118 99 334.00 118 137 333.48 118 99 334.00 118 137 333.50 118 100 334.01 118 138							
Volume 333.38 118 92 333.90 118 130 Provided 333.39 118 93 333.91 118 130 333.40 118 93 333.92 118 131 333.41 118 94 333.93 118 132 333.42 118 95 333.94 118 133 333.43 118 96 333.95 118 133 333.44 118 96 333.96 118 134 333.45 118 97 333.97 118 135 333.46 118 98 333.98 118 135 333.47 118 99 334.00 118 137 333.49 118 100 334.01 118 137 333.50 118 101 334.02 118 138 333.51 118 101 334.03 118 140 333.53		333.36	118	90	333.88	118	
Provided 333.39 118 93 333.91 118 130 333.40 118 93 333.92 118 131 333.41 118 94 333.93 118 132 333.42 118 95 333.94 118 133 333.43 118 96 333.95 118 133 333.44 118 96 333.96 118 134 333.45 118 97 333.97 118 135 333.46 118 98 333.98 118 135 333.47 118 99 334.00 118 136 333.48 118 99 334.00 118 137 333.50 118 101 334.02 118 138 333.51 118 101 334.03 118 139 333.53 118 102 334.04 118 140 333.53 118 <td< td=""><td></td><td>333.37</td><td>118</td><td>91</td><td>333.89</td><td>118</td><td></td></td<>		333.37	118	91	333.89	118	
333.40 118 93 333.92 118 131 333.41 118 94 333.93 118 132 333.42 118 95 333.94 118 133 333.43 118 96 333.95 118 133 333.44 118 96 333.96 118 134 333.45 118 97 333.97 118 135 333.46 118 98 333.98 118 135 333.47 118 99 333.99 118 136 333.48 118 99 334.00 118 137 333.49 118 100 334.01 118 137 333.50 118 101 334.02 118 138 333.51 118 101 334.03 118 139 333.53 118 102 334.04 118 140 333.54 118 104 334.05 118 141							
333.41 118 94 333.93 118 132 333.42 118 95 333.94 118 133 333.43 118 96 333.95 118 133 333.44 118 96 333.96 118 134 333.45 118 97 333.97 118 135 333.46 118 98 333.98 118 135 333.47 118 99 333.99 118 136 333.48 118 99 334.00 118 137 333.49 118 100 334.01 118 137 333.50 118 101 334.02 118 138 333.51 118 101 334.03 118 139 333.52 118 102 334.04 118 140 333.54 118 103 334.05 118 140 333.54 118 104 334.06 118 141	Provided						
333.42 118 95 333.94 118 133 333.43 118 96 333.95 118 133 333.44 118 96 333.96 118 134 333.45 118 97 333.97 118 135 333.46 118 98 333.98 118 135 333.47 118 99 333.99 118 136 333.48 118 99 334.00 118 137 333.49 118 100 334.01 118 137 333.50 118 101 334.02 118 138 333.51 118 101 334.03 118 139 333.52 118 102 334.04 118 140 333.53 118 103 334.05 118 140 333.54 118 104 334.06 118 141							
333.43 118 96 333.95 118 133 333.44 118 96 333.96 118 134 333.45 118 97 333.97 118 135 333.46 118 98 333.98 118 135 333.47 118 99 333.99 118 136 333.48 118 99 334.00 118 137 333.49 118 100 334.01 118 137 333.50 118 101 334.02 118 138 333.51 118 101 334.03 118 139 333.52 118 102 334.04 118 140 333.53 118 103 334.05 118 140 333.54 118 104 334.06 118 141							
333.44 118 96 333.96 118 134 333.45 118 97 333.97 118 135 333.46 118 98 333.98 118 135 333.47 118 99 333.99 118 136 333.48 118 99 334.00 118 137 333.49 118 100 334.01 118 137 333.50 118 101 334.02 118 138 333.51 118 101 334.03 118 139 333.52 118 102 334.04 118 140 333.53 118 103 334.05 118 140 333.54 118 104 334.06 118 141							
333.45 118 97 333.97 118 135 333.46 118 98 333.98 118 135 333.47 118 99 333.99 118 136 333.48 118 99 334.00 118 137 333.49 118 100 334.01 118 137 333.50 118 101 334.02 118 138 333.51 118 101 334.03 118 139 333.52 118 102 334.04 118 140 333.53 118 103 334.05 118 140 333.54 118 104 334.06 118 141							
333.46 118 98 333.98 118 135 333.47 118 99 333.99 118 136 333.48 118 99 334.00 118 137 333.49 118 100 334.01 118 137 333.50 118 101 334.02 118 138 333.51 118 101 334.03 118 139 333.52 118 102 334.04 118 140 333.53 118 103 334.05 118 140 333.54 118 104 334.06 118 141							
333.47 118 99 333.99 118 136 333.48 118 99 334.00 118 137 333.49 118 100 334.01 118 137 333.50 118 101 334.02 118 138 333.51 118 101 334.03 118 139 333.52 118 102 334.04 118 140 333.53 118 103 334.05 118 140 333.54 118 104 334.06 118 141							
333.48 118 99 334.00 118 137 333.49 118 100 334.01 118 137 333.50 118 101 334.02 118 138 333.51 118 101 334.03 118 139 333.52 118 102 334.04 118 140 333.53 118 103 334.05 118 140 333.54 118 104 334.06 118 141							
333.49 118 100 334.01 118 137 333.50 118 101 334.02 118 138 333.51 118 101 334.03 118 139 333.52 118 102 334.04 118 140 333.53 118 103 334.05 118 140 333.54 118 104 334.06 118 141							
333.50 118 101 334.02 118 138 333.51 118 101 334.03 118 139 333.52 118 102 334.04 118 140 333.53 118 103 334.05 118 140 333.54 118 104 334.06 118 141							
333.51 118 101 334.03 118 139 333.52 118 102 334.04 118 140 333.53 118 103 334.05 118 140 333.54 118 104 334.06 118 141							
333.52 118 102 334.04 118 140 333.53 118 103 334.05 118 140 333.54 118 104 334.06 118 141							
333.53 118 103 334.05 118 140 333.54 118 104 334.06 118 141							
333.54 118 104 334.06 118 141							

Printed 2/19/2021

Stage-Area-Storage for Pond INF-RF4: INF-RF4 (continued)

E	Elevation	Surface	Storage	Elevation	Surface	Storage
	(feet)	(sq-ft)	(cubic-feet)	(feet)	(sq-ft)	(cubic-feet)
	367.04	118	66	367.56	118	105
	367.05	118	67	367.57	118	106
	367.06	118	67	367.58	118	107
	367.07	118	68	367.59	118	107
	367.08	118	69	367.60	118	108
	367.09	118	70	367.61	118	109
	367.10	118	71	367.62	118	110
	367.11	118	71	367.63	118	110
	367.12	118	72	367.64	118	111
	367.13	118	73	367.65	118	112
	367.14	118	74	367.66	118	113
	367.15	118	74	367.67	118	113
	367.16	118	75	367.68	118	114
	367.17	118	76	367.69	118	115
	367.18	118	77	367.70	118	115
	367.19	118	77	367.71	118	116
	367.20	118	78	367.72	118	117
	367.21	118	79	367.73	118	118
	367.22	118	80	367.74	118	118
	367.23	118	80	367.75	118	119
	367.24	118	81	367.76	118	120
	367.25	118	82	367.77	118	120
	367.26	118	83	367.78	118	121
	367.27	118	83	367.79	118	122
	367.28	118	84	367.80	118	123
	367.29	118	85	367.81	118	123
	367.30	118	86	367.82	118	124
	367.31	118	87	367.83	118	125
	367.32	118	87	367.84	118	125
	367.33	118	88	367.85	118	126
	367.34	118	89	367.86	118	127
	367.35	118	90	367.87	118	128
	367.36	118	90	367.88	118	128
Recharge	367.37	118	91	367.89	118	129
Volume	367.38	(118)	92	367.90	118	130
Provided	367.39	118	93	367.91	118	130
	367.40	118	93	367.92	118	131
	367.41	118	94	367.93	118	132
	367.42	118	95	367.94	118	133
	367.43	118	96	367.95	118	133
	367.44	118	96	367.96	118	134
	367.45	118	97	367.97	118	135
	367.46	118	98	367.98	118	135
	367.47	118	99	367.99	118	136
	367.48	118	99	368.00	118	137
	367.49	118	100	368.01	118	137
	367.50	118	101	368.02	118	138
	367.51	118	101	368.03	118	139
	367.52	118	102	368.04	118	140
	367.53	118	103	368.05	118	140
	367.54	118	104	368.06	118	141
	367.55	118	104	368.07	118	142

Stage-Area-Storage for Pond INF-RF5: INF-RF5 (continued)

E	Elevation	Surface	Storage	Elevation	Surface	Storage
_	(feet)	(sq-ft)	(cubic-feet)	(feet)	(sq-ft)	(cubic-feet)
	377.04	118	66	377.56	118	105
	377.05	118	67	377.57	118	106
	377.06	118	67	377.58	118	107
	377.07	118	68	377.59	118	107
	377.08	118	69	377.60	118	108
	377.09	118	70	377.61	118	109
	377.10	118	71	377.62	118	110
	377.11	118	71	377.63	118	110
	377.12	118	72	377.64	118	111
	377.13	118	73	377.65	118	112
	377.14	118	74	377.66	118	113
	377.15	118	74	377.67	118	113
	377.16	118	75 70	377.68	118	114
	377.17	118	76 77	377.69	118	115
	377.18	118	77	377.70	118	115
	377.19	118	77	377.71	118	116
	377.20	118	78 70	377.72	118	117
	377.21	118	79	377.73	118	118
	377.22	118	80	377.74	118	118
	377.23	118	80	377.75	118	119
	377.24	118	81	377.76	118	120
	377.25	118	82	377.77	118	120
	377.26	118	83 83	377.78	118	121 122
	377.27 377.28	118 118	84	377.79 377.80	118 118	123
	377.29	118	85	377.80	118	123
	377.29	118	86	377.82	118	123
	377.30	118	87	377.83	118	125
	377.31	118	87 87	377.83	118	125
	377.32	118	88	377.85	118	126
	377.34	118	89	377.86	118	127
	377.35	118	90	377.87	118	128
	377.36	118	90	377.88	118	128
Recharge	377.37	118	91	377.89	118	129
Volume	377.38	118 118	92	377.90	118	130
Provided	377.39	118	93	377.91	118	130
Trovided	377.40	118	93	377.92	118	131
	377.41	118	94	377.93	118	132
	377.42	118	95	377.94	118	133
	377.43	118	96	377.95	118	133
	377.44	118	96	377.96	118	134
	377.45	118	97	377.97	118	135
	377.46	118	98	377.98	118	135
	377.47	118	99	377.99	118	136
	377.48	118	99	378.00	118	137
	377.49	118	100	378.01	118	137
	377.50	118	101	378.02	118	138
	377.51	118	101	378.03	118	139
	377.52	118	102	378.04	118	140
	377.53	118	103	378.05	118	140
	377.54	118	104	378.06	118	141
	377.55	118	104	378.07	118	142
				I		

Printed 2/19/2021

Stage-Area-Storage for Pond INF-RF6: INF-RF6 (continued)

	Elevation	Surface	Storage	Elevation	Surface	Storage
	(feet)	(sq-ft)	(cubic-feet)	(feet)	(sq-ft)	(cubic-feet)
_	377.04	118	66	377.56	118	105
	377.05	118	67	377.57	118	106
	377.06	118	67	377.58	118	107
	377.07	118	68	377.59	118	107
	377.08	118	69	377.60	118	108
	377.09	118	70	377.61	118	109
	377.10	118	71	377.62	118	110
	377.11 377.12	118 118	71 72	377.63 377.64	118 118	110 111
	377.12	118	73	377.65	118	112
	377.13	118	73 74	377.66	118	113
	377.15	118	74	377.67	118	113
	377.16	118	75	377.68	118	114
	377.17	118	76	377.69	118	115
	377.18	118	77	377.70	118	115
	377.19	118	77	377.71	118	116
	377.20	118	78	377.72	118	117
	377.21	118	79	377.73	118	118
	377.22	118	80	377.74	118	118
	377.23	118	80	377.75	118	119
	377.24 377.25	118 118	81 82	377.76 377.77	118 118	120 120
	377.26	118	83	377.78	118	120
	377.27	118	83	377.79	118	122
	377.28	118	84	377.80	118	123
	377.29	118	85	377.81	118	123
	377.30	118	86	377.82	118	124
	377.31	118	87	377.83	118	125
	377.32	118	87	377.84	118	125
	377.33	118	88	377.85	118	126
	377.34	118	89	377.86	118	127
	377.35	118	90	377.87	118	128
	377.36 377.37	118 118	90 91	377.88 377.89	118 118	128 129
Recharge	377.38	118 118	92 92	377.90	118	130
Volume	377.39	118	93	377.91	118	130
Provided	377.40	118	93	377.92	118	131
	377.41	118	94	377.93	118	132
	377.42	118	95	377.94	118	133
	377.43	118	96	377.95	118	133
	377.44	118	96	377.96	118	134
	377.45	118	97	377.97	118	135
	377.46	118	98	377.98	118	135
	377.47 377.48	118 118	99 99	377.99 378.00	118 118	136 137
	377.49	118	100	378.00	118	137
	377.50	118	101	378.02	118	138
	377.51	118	101	378.03	118	139
	377.52	118	102	378.04	118	140
	377.53	118	103	378.05	118	140
	377.54	118	104	378.06	118	141
	377.55	118	104	378.07	118	142
				I		

Hydrograph for Pond INF-103: INF-103

Time (hours)	Inflow (cfs)	Storage (cubic-feet)	Elevation (feet)	Outflow (cfs)	Discarded (cfs)	Primary (cfs)	
0.00	0.0	Ó	326.00	0.0	0.0	0.0	
2.00	0.0	0	326.00	0.0	0.0	0.0	
4.00	0.0	0	326.00	0.0	0.0	0.0	
6.00	0.0	7	326.04	0.0	0.0	0.0	
8.00	0.0	65	326.34	0.0	0.0	0.0	
10.00	0.0	136	326.62	0.0	0.0	0.0	
12.00	2.2	281	327.07	1.9	0.0	1.9	
14.00	0.3	166	326.71	0.3	0.0	0.3	
16.00	0.1	150	326.66	0.1	0.0	0.1	
18.00	0.1	139	326.63	0.1	0.0	0.1	
20.00	0.0	135	326.62	0.0	0.0	0.0	
22.00	0.0	131	326.61	0.0	0.0	0.0	
24.00	0.0	127	326.59	0.0	0.0	0.0	
26.00	0.0	101	326.52	0.0	0.0	0.0	
28.00	0.0	79	326.42	0.0	0.0	0.0	
30.00	0.0	57	326.30	0.0	0.0	0.0	
32.00	0.0	36	326.19	0.0	0.0	0.0	
34.00	0.0	14	326.07	0.0	0.0	0.0	Drawdown Time < 72 Hours
36.00 38.00	0.0 0.0	0	326.00 326.00	0.0 0.0	0.0 0.0	0.0 0.0	
40.00	0.0	0	326.00	0.0	0.0	0.0	
42.00	0.0	0	326.00	0.0	0.0	0.0	
44.00	0.0	0	326.00	0.0	0.0	0.0	
46.00	0.0	0	326.00	0.0	0.0	0.0	
48.00	0.0	Ö	326.00	0.0	0.0	0.0	
50.00	0.0	Ö	326.00	0.0	0.0	0.0	
52.00	0.0	Ö	326.00	0.0	0.0	0.0	
54.00	0.0	0	326.00	0.0	0.0	0.0	
56.00	0.0	0	326.00	0.0	0.0	0.0	
58.00	0.0	0	326.00	0.0	0.0	0.0	
60.00	0.0	0	326.00	0.0	0.0	0.0	
62.00	0.0	0	326.00	0.0	0.0	0.0	
64.00	0.0	0	326.00	0.0	0.0	0.0	
66.00	0.0	0	326.00	0.0	0.0	0.0	
68.00	0.0	0	326.00	0.0	0.0	0.0	
70.00	0.0	0	326.00	0.0	0.0	0.0	
72.00	0.0	0	326.00	0.0	0.0	0.0	
74.00	0.0	0	326.00	0.0	0.0	0.0	
76.00	0.0	0	326.00	0.0	0.0	0.0	
78.00	0.0	0	326.00	0.0	0.0	0.0	
80.00	0.0	0	326.00	0.0	0.0	0.0	
82.00	0.0	0	326.00	0.0	0.0	0.0	
84.00	0.0	0	326.00	0.0	0.0	0.0	
86.00 88.00	0.0 0.0	0	326.00 326.00	0.0 0.0	0.0 0.0	0.0 0.0	
90.00	0.0	0	326.00	0.0	0.0	0.0	
92.00	0.0	0	326.00	0.0	0.0	0.0	
94.00	0.0	0	326.00	0.0	0.0	0.0	
96.00	0.0	0	326.00	0.0	0.0	0.0	
00.00	0.0	· ·	5_5.00	0.0	0.0	0.0	

Hydrograph for Pond INF-104: INF-104

Time (hours)	Inflow (cfs)	Storage (cubic-feet)	Elevation (feet)	Outflow (cfs)	Discarded (cfs)	Primary (cfs)	
0.00	0.0	0	325.10	0.0	0.0	0.0	
2.00	0.0	0	325.10	0.0	0.0	0.0	
4.00	0.0	0	325.10	0.0	0.0	0.0	
6.00	0.0	0	325.10	0.0	0.0	0.0	
8.00	0.0	2	325.10	0.0	0.0	0.0	
10.00	0.2	23	325.13	0.1	0.1	0.0	
12.00 14.00	2.8 1.3	2,651 2,581	327.16 327.11	1.6 1.3	0.1 0.1	1.5 1.2	
16.00	0.6	2,390	326.97	0.7	0.1	0.5	
18.00	0.3	2,251	326.86	0.4	0.1	0.2	
20.00	0.2	2,156	326.80	0.2	0.1	0.1	
22.00	0.2	2,083	326.74	0.2	0.1	0.0	
24.00	0.1	1,981	326.67	0.1	0.1	0.0	
26.00	0.0	1,137	326.10	0.1	0.1	0.0	
28.00	0.0	170	325.33	0.1	0.1	0.0	
30.00	0.0	0	325.10	0.0	0.0	0.0	Drawdown Time < 72 Hours
32.00	0.0	0	325.10	0.0	0.0	0.0	Diawdowii filile < 72 Hours
34.00	0.0	0	325.10	0.0	0.0	0.0	
36.00	0.0	0	325.10	0.0	0.0	0.0	
38.00	0.0	0	325.10	0.0	0.0	0.0	
40.00	0.0	0	325.10	0.0	0.0	0.0	
42.00	0.0	0	325.10	0.0	0.0	0.0	
44.00	0.0	0	325.10	0.0	0.0	0.0	
46.00	0.0	0	325.10	0.0	0.0	0.0	
48.00 50.00	0.0 0.0	0	325.10	0.0 0.0	0.0 0.0	0.0 0.0	
52.00	0.0	0	325.10 325.10	0.0	0.0	0.0	
54.00	0.0	0	325.10	0.0	0.0	0.0	
56.00	0.0	Ö	325.10	0.0	0.0	0.0	
58.00	0.0	Ö	325.10	0.0	0.0	0.0	
60.00	0.0	0	325.10	0.0	0.0	0.0	
62.00	0.0	0	325.10	0.0	0.0	0.0	
64.00	0.0	0	325.10	0.0	0.0	0.0	
66.00	0.0	0	325.10	0.0	0.0	0.0	
68.00	0.0	0	325.10	0.0	0.0	0.0	
70.00	0.0	0	325.10	0.0	0.0	0.0	
72.00	0.0	0	325.10	0.0	0.0	0.0	
74.00	0.0	0	325.10	0.0	0.0	0.0	
76.00	0.0	0	325.10	0.0	0.0	0.0	
78.00 80.00	0.0 0.0	0	325.10 325.10	0.0 0.0	0.0 0.0	0.0 0.0	
82.00	0.0	0	325.10	0.0	0.0	0.0	
84.00	0.0	0	325.10	0.0	0.0	0.0	
86.00	0.0	0	325.10	0.0	0.0	0.0	
88.00	0.0	Ö	325.10	0.0	0.0	0.0	
90.00	0.0	0	325.10	0.0	0.0	0.0	
92.00	0.0	0	325.10	0.0	0.0	0.0	
94.00	0.0	0	325.10	0.0	0.0	0.0	
96.00	0.0	0	325.10	0.0	0.0	0.0	

Hydrograph for Pond INF-105: INF-105

Time (hours)	Inflow (cfs)	Storage (cubic-feet)	Elevation (feet)	Outflow (cfs)	Discarded (cfs)	Primary (cfs)	
0.00	0.0	0	346.50	0.0	0.0	0.0	
2.00	0.0	0	346.50	0.0	0.0	0.0	
4.00	0.0	0	346.50	0.0	0.0	0.0	
6.00	0.0	0	346.50	0.0	0.0	0.0	
8.00	0.0	2	346.50	0.0	0.0	0.0	
10.00	0.2	104	346.57	0.1	0.1	0.0	
12.00	2.7	3,581	347.87	0.1	0.1	0.0	
14.00	8.0	5,729	348.61	8.0	0.1	0.7	
16.00	0.4	5,425	348.50	0.5	0.1	0.3	
18.00	0.3	5,198	348.42	0.3	0.1	0.2	
20.00	0.2	5,052	348.36	0.2	0.1	0.1	
22.00	0.2	4,956	348.33	0.2	0.1	0.1	
24.00	0.1	4,853	348.29	0.1	0.1	0.0	
26.00	0.0	4,120	348.05	0.1	0.1	0.0	
28.00	0.0	3,277	347.77	0.1	0.1	0.0	
30.00	0.0	2,433	347.51	0.1	0.1	0.0	
32.00	0.0	1,590	347.24	0.1	0.1	0.0	
34.00	0.0	747	346.97	0.1	0.1	0.0	
36.00	0.0	0	346.50	0.0	0.0	0.0	Drawdown Time < 72 Hours
38.00	0.0	0	346.50	0.0	0.0	0.0	
40.00	0.0	0	346.50	0.0	0.0	0.0	
42.00	0.0	0	346.50	0.0	0.0	0.0	
44.00	0.0	0	346.50	0.0	0.0	0.0	
46.00	0.0	0	346.50	0.0	0.0	0.0	
48.00	0.0	0	346.50	0.0	0.0	0.0	
50.00	0.0	0	346.50	0.0	0.0	0.0	
52.00	0.0	0	346.50	0.0	0.0	0.0	
54.00	0.0	0	346.50	0.0	0.0	0.0	
56.00	0.0	0	346.50	0.0	0.0	0.0	
58.00	0.0	0	346.50	0.0	0.0	0.0	
60.00	0.0	0	346.50	0.0	0.0	0.0	
62.00	0.0	0	346.50	0.0	0.0	0.0	
64.00	0.0	0	346.50	0.0	0.0	0.0	
66.00	0.0	0	346.50	0.0	0.0	0.0	
68.00	0.0	0	346.50	0.0	0.0	0.0	
70.00	0.0	0	346.50	0.0	0.0	0.0	
72.00	0.0	0	346.50 346.50	0.0 0.0	0.0 0.0	0.0	
74.00	0.0					0.0	
76.00 78.00	0.0 0.0	0	346.50 346.50	0.0 0.0	0.0 0.0	0.0 0.0	
80.00	0.0	0	346.50	0.0	0.0	0.0	
82.00	0.0	0	346.50	0.0	0.0	0.0	
84.00	0.0	0	346.50	0.0	0.0	0.0	
86.00	0.0	0	346.50	0.0	0.0	0.0	
88.00	0.0	0	346.50	0.0	0.0	0.0	
90.00	0.0	0	346.50	0.0	0.0	0.0	
92.00	0.0	0	346.50	0.0	0.0	0.0	
94.00	0.0	0	346.50	0.0	0.0	0.0	
96.00	0.0	0	346.50	0.0	0.0	0.0	
55.55	0.0	Ū	5.5.55	0.0	0.0	0.0	

Prepared by WDA Design Group
HydroCAD® 10.10-5a s/n 11557 © 2020 HydroCAD Software Solutions LLC

Hydrograph for Pond INF-106: INF-106

Time	Inflow	Storage	Elevation	Outflow	Discarded	Primary	
(hours)	(cfs)	(cubic-feet)	(feet)	(cfs)	(cfs)	(cfs)	
0.00	0.0	Ó	351.25	0.0	0.0	0.0	
2.00	0.0	0	351.25	0.0	0.0	0.0	
4.00	0.0	0	351.25	0.0	0.0	0.0	
6.00	0.0	2	351.26	0.0	0.0	0.0	
8.00	0.1	48	351.40	0.0	0.0	0.0	
10.00	0.1	490	352.41	0.0	0.0	0.0	
12.00	2.1	2,673	356.34	1.4	0.0	1.4	
14.00	0.2	2,394	355.73	0.2	0.0	0.2	
16.00	0.1	2,364	355.67	0.1	0.0	0.1	
18.00	0.1	2,345	355.63	0.1	0.0	0.0	
20.00	0.1	2,336	355.61	0.1	0.0	0.0	
22.00	0.0	2,329	355.60	0.0	0.0	0.0	
24.00	0.0	2,319	355.58	0.0	0.0	0.0	
26.00	0.0	2,101	355.15	0.0	0.0	0.0	
28.00	0.0	1,870	354.73	0.0	0.0	0.0	
30.00	0.0	1,640	354.32	0.0	0.0	0.0	
32.00	0.0	1,409	353.92	0.0	0.0	0.0	
34.00	0.0	1,179	353.53	0.0	0.0	0.0	
36.00 38.00	0.0 0.0	949 718	353.15 352.77	0.0 0.0	0.0 0.0	0.0 0.0	
40.00	0.0	488	352.77	0.0	0.0	0.0	
42.00	0.0	257	352.40	0.0	0.0	0.0	
44.00	0.0	27	351.34	0.0	0.0	0.0	
46.00	0.0	0	351.34	0.0	0.0	0.0	
48.00	0.0	Ő	351.25	0.0	0.0	0.0	Dr
50.00	0.0	Ő	351.25	0.0	0.0	0.0	
52.00	0.0	Ö	351.25	0.0	0.0	0.0	
54.00	0.0	Ö	351.25	0.0	0.0	0.0	
56.00	0.0	0	351.25	0.0	0.0	0.0	
58.00	0.0	0	351.25	0.0	0.0	0.0	
60.00	0.0	0	351.25	0.0	0.0	0.0	
62.00	0.0	0	351.25	0.0	0.0	0.0	
64.00	0.0	0	351.25	0.0	0.0	0.0	
66.00	0.0	0	351.25	0.0	0.0	0.0	
68.00	0.0	0	351.25	0.0	0.0	0.0	
70.00	0.0	0	351.25	0.0	0.0	0.0	
72.00	0.0	0	351.25	0.0	0.0	0.0	
74.00	0.0	0	351.25	0.0	0.0	0.0	
76.00	0.0	0	351.25	0.0	0.0	0.0	
78.00	0.0	0	351.25	0.0	0.0	0.0	
80.00	0.0	0	351.25	0.0	0.0	0.0	
82.00	0.0	0	351.25	0.0	0.0	0.0	
84.00	0.0	0	351.25	0.0	0.0	0.0	
86.00	0.0	0	351.25	0.0	0.0	0.0	
88.00	0.0	0	351.25	0.0	0.0	0.0	
90.00	0.0	0	351.25	0.0	0.0	0.0	
92.00	0.0	0	351.25	0.0	0.0	0.0	
94.00	0.0	0	351.25 351.25	0.0	0.0	0.0	
96.00	0.0	U	351.25	0.0	0.0	0.0	

Drawdown Time < 72 Hours

Printed 5/3/2021

Prepared by WDA Design Group
HydroCAD® 10.10-5a s/n 11557 © 2020 HydroCAD Software Solutions LLC

Hydrograph for Pond INF-201: INF-201

(hours) (cfs) (cubic-feet) (feet) (cfs) (cfs) (cfs) 0.00 0.0 0.0 0.0 0.0 0.0 2.00 0.0 0.0 0.0 0.0 0.0 4.00 0.0 0.0 0.0 0.0 0.0 6.00 0.0 0.0 0.0 0.0 0.0 8.00 0.0 1 336.20 0.0 0.0 0.0	
2.00 0.0 0 336.20 0.0 0.0 0.0 4.00 0.0 0 0.0 0.0 0.0 0.0 6.00 0.0 0 0.0 0.0 0.0 0.0 8.00 0.0 1 336.20 0.0 0.0 0.0	
6.00 0.0 0 336.20 0.0 0.0 0.0 8.00 0.0 1 336.20 0.0 0.0 0.0	
6.00 0.0 0 336.20 0.0 0.0 0.0 8.00 0.0 1 336.20 0.0 0.0 0.0	
10.00 0.3 115 336.29 0.2 0.2 0.0	
12.00 4.8 4,559 338.25 2.7 0.2 2.5	
14.00 1.1 3,798 337.92 1.2 0.2 1.0	
16.00 0.6 3,414 337.76 0.6 0.2 0.5	
18.00 0.3 3,152 337.66 0.4 0.2 0.2	
20.00 0.3 3,006 337.60 0.3 0.2 0.1	
22.00 0.2 2,913 337.56 0.2 0.2 0.1	
24.00 0.2 2,804 337.52 0.2 0.2 0.0	
26.00 0.0 1,755 337.11 0.2 0.2 0.0	
28.00 0.0 535 336.61 0.2 0.2 0.0 30.00 0.0 0.0 Drawdown Time < 72	Hours
0.00	Hours
32.00 0.0 0 336.20 0.0 0.0 0.0	
34.00 0.0 0 336.20 0.0 0.0 0.0	
36.00 0.0 0 336.20 0.0 0.0 0.0 38.00 0.0 0 336.20 0.0 0.0 0.0	
40.00 0.0 0 336.20 0.0 0.0 0.0	
42.00 0.0 0 336.20 0.0 0.0 0.0 42.00 0.0 0 336.20 0.0 0.0	
44.00 0.0 0 336.20 0.0 0.0 0.0	
46.00 0.0 0 336.20 0.0 0.0 0.0	
48.00 0.0 0 336.20 0.0 0.0 0.0	
50.00 0.0 0 336.20 0.0 0.0 0.0	
52.00 0.0 0 336.20 0.0 0.0 0.0	
54.00 0.0 0 336.20 0.0 0.0 0.0	
56.00 0.0 0 336.20 0.0 0.0 0.0	
58.00 0.0 0 336.20 0.0 0.0 0.0	
60.00 0.0 0 336.20 0.0 0.0 0.0	
62.00 0.0 0 336.20 0.0 0.0 0.0	
64.00 0.0 0 336.20 0.0 0.0 0.0	
66.00 0.0 0 336.20 0.0 0.0 0.0	
68.00 0.0 0 336.20 0.0 0.0 0.0	
70.00 0.0 0 336.20 0.0 0.0 0.0	
72.00 0.0 0 336.20 0.0 0.0 0.0	
74.00 0.0 0 336.20 0.0 0.0 0.0	
76.00 0.0 0 336.20 0.0 0.0 0.0 0.0 78.00 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	
78.00 0.0 0 336.20 0.0 0.0 0.0 80.00 0.0 0 336.20 0.0 0.0 0.0	
80.00 0.0 0 336.20 0.0 0.0 0.0 82.00 0.0 0 336.20 0.0 0.0 0.0	
84.00 0.0 0 336.20 0.0 0.0 0.0 84.00 0.0 0 336.20 0.0 0.0	
86.00 0.0 0 336.20 0.0 0.0 0.0	
88.00 0.0 0 336.20 0.0 0.0 0.0	
90.00 0.0 0 336.20 0.0 0.0 0.0	
92.00 0.0 0 336.20 0.0 0.0 0.0	
94.00 0.0 0 336.20 0.0 0.0 0.0	
96.00 0.0 0 336.20 0.0 0.0 0.0	

Hydrograph for Pond 1P: Pond

Time (hours)	Inflow (cfs)	Storage (cubic-feet)	Elevation (feet)	Primary (cfs)	
0.00	0.0	0	320.00	0.0	
2.00	0.0	Ő	320.00	0.0	
4.00	0.0	0	320.00	0.0	
6.00	0.0	0	320.00	0.0	
8.00	0.0	0	320.00	0.0	
10.00	0.2	9	320.03	0.0	
12.00	6.0	139	320.37	5.8	
14.00	2.0	61	320.19	2.0	
16.00	1.0	35	320.12	1.0	
18.00	0.5	21	320.07	0.5	
20.00	0.3	15	320.05	0.3	
22.00	0.2	11	320.04	0.2	
24.00	0.1	8	320.03	0.1	
26.00	0.0	0	320.00	0.0	Drawdown Time < 72 Hours
28.00	0.0	0	320.00	0.0	
30.00	0.0	0	320.00	0.0	
32.00	0.0	0	320.00	0.0	
34.00	0.0	0	320.00	0.0	
36.00	0.0	0	320.00	0.0	
38.00	0.0	0	320.00	0.0	
40.00	0.0	0	320.00	0.0	
42.00	0.0	0	320.00	0.0	
44.00	0.0	0	320.00	0.0	
46.00	0.0	0	320.00	0.0	
48.00	0.0	0	320.00	0.0	
50.00	0.0	0	320.00	0.0	
52.00	0.0	0	320.00	0.0	
54.00	0.0	0	320.00	0.0	
56.00	0.0	0	320.00	0.0	
58.00	0.0	0	320.00	0.0	
60.00	0.0	0	320.00	0.0	
62.00	0.0	0	320.00	0.0	
64.00	0.0	0	320.00	0.0	
66.00	0.0	0	320.00	0.0	
68.00	0.0	0	320.00	0.0	
70.00	0.0	0	320.00	0.0	
72.00	0.0	0	320.00	0.0	
74.00	0.0	0	320.00	0.0	
76.00 78.00	0.0 0.0	0	320.00 320.00	0.0 0.0	
80.00	0.0	0	320.00	0.0	
82.00	0.0	0	320.00	0.0	
84.00	0.0	0	320.00	0.0	
86.00	0.0	0	320.00	0.0	
88.00	0.0	0	320.00	0.0	
90.00	0.0	0	320.00	0.0	
92.00	0.0	Ö	320.00	0.0	
94.00	0.0	0	320.00	0.0	
96.00	0.0	0	320.00	0.0	

Version 1, Automated: Mar. 4, 2008

- 1. In BMP Column, click on Blue Cell to Activate Drop Down Menu
- 2. Select BMP from Drop Down Menu
- 3. After BMP is selected, TSS Removal and other Columns are automatically completed.

Location: Outlet 01

	В	С	D	E	F
		TSS Removal	Starting TSS	Amount	Remaining
	BMP ¹	Rate ¹	Load*	Removed (C*D)	Load (D-E)
neet	Grass Channel	0.50	1.00	0.50	0.50
Removal on Worksheet	Deep Sump and Hooded Catch Basin	0.25	0.50	0.13	0.38
Rem on W	Extended Dry Detention Basin	0.50	0.38	0.19	0.19
TSS Calculati		0.00	0.19	0.00	0.19
Calc		0.00	0.40	0.00	0.40
		0.00	0.19	0.00	0.19

Total TSS Removal =

Separate Form Needs to be Completed for Each Outlet or BMP Train

Project: 85 & 95 West Street
Prepared By: GBS
Date: 2/24/2021

Version 1, Automated: Mar. 4, 2008

- 1. In BMP Column, click on Blue Cell to Activate Drop Down Menu
- 2. Select BMP from Drop Down Menu
- 3. After BMP is selected, TSS Removal and other Columns are automatically completed.

Location: Outlet 02

В	С	D	E	F
	TSS Removal	Starting TSS	Amount	Remaining
BMP ¹	Rate ¹	Load*	Removed (C*D)	Load (D-E)
Grass Channel	0.50	1.00	0.50	0.50
Deep Sump and Hooded Catch Basin	0.25	0.50	0.13	0.38
Infiltration Basin	0.80	0.38	0.30	0.08
	0.00	0.08	0.00	0.08
	0.00	0.08	0.00	0.08
	BMP ¹	BMP ¹ Rate ¹ Grass Channel 0.50 Deep Sump and Hooded Catch Basin 0.25 Infiltration Basin 0.80	TSS Removal Starting TSS Load*	TSS Removal Starting TSS Amount Rate ¹ Load* Removed (C*D)

Total TSS Removal =

Separate Form Needs to be Completed for Each Outlet or BMP Train

Project: 85 & 95 West Street
Prepared By: GBS
Date: 2/24/2021

Version 1, Automated: Mar. 4, 2008

- 1. In BMP Column, click on Blue Cell to Activate Drop Down Menu
- 2. Select BMP from Drop Down Menu
- 3. After BMP is selected, TSS Removal and other Columns are automatically completed.

Location: Outlet 03

В	С	D	E	F
	TSS Removal	Starting TSS	Amount	Remaining
BMP ¹	Rate ¹	Load*	Removed (C*D)	Load (D-E)
Grass Channel	0.50	1.00	0.50	0.50
Deep Sump and Hooded Catch Basin	0.25	0.50	0.13	0.38
Infiltration Basin	0.80	0.38	0.30	0.08
	0.00	0.08	0.00	0.08
	0.00	0.08	0.00	0.08
	BMP ¹	BMP ¹ Rate ¹ Grass Channel 0.50 Deep Sump and Hooded Catch Basin 0.25 Infiltration Basin 0.80	TSS Removal Starting TSS Load*	TSS Removal Starting TSS Amount Rate ¹ Load* Removed (C*D)

Total TSS Removal =

Separate Form Needs to be Completed for Each Outlet or BMP Train

Project: 85 & 95 West Street
Prepared By: GBS
Date: 2/24/2021

Version 1, Automated: Mar. 4, 2008

- 1. In BMP Column, click on Blue Cell to Activate Drop Down Menu
- 2. Select BMP from Drop Down Menu
- 3. After BMP is selected, TSS Removal and other Columns are automatically completed.

Location: Outlet 04

	В	С	D	Е	F
		TSS Removal	Starting TSS	Amount	Remaining
	BMP ¹	Rate ¹	Load*	Removed (C*D)	Load (D-E)
heet	Grass Channel	0.50	1.00	0.50	0.50
Removal on Worksheet	Deep Sump and Hooded Catch Basin	0.25	0.50	0.13	0.38
Rem on W	Infiltration Basin	0.80	0.38	0.30	0.08
TSS Calculati		0.00	0.08	0.00	0.08
Sale					
J		0.00	0.08	0.00	0.08

Total TSS Removal =

Separate Form Needs to be Completed for Each Outlet or BMP Train

Project: 85 & 95 West Street
Prepared By: GBS
Date: 2/24/2021

*Equals remaining load from previous BMP (E) which enters the BMP

93%

Version 1, Automated: Mar. 4, 2008

- 1. In BMP Column, click on Blue Cell to Activate Drop Down Menu
- 2. Select BMP from Drop Down Menu
- 3. After BMP is selected, TSS Removal and other Columns are automatically completed.

Location: Outlet 05

	В	С	D	Е	F
		TSS Removal	Starting TSS	Amount	Remaining
	BMP ¹	Rate ¹	Load*	Removed (C*D)	Load (D-E)
eet	Grass Channel	0.50	1.00	0.50	0.50
Removal on Worksheet	Deep Sump and Hooded Catch Basin	0.25	0.50	0.13	0.38
Rem on W	Infiltration Basin	0.80	0.38	0.30	0.08
TSS Calculati		0.00	0.08	0.00	0.08
Calc					
		0.00	0.08	0.00	0.08

Total TSS Removal =

Separate Form Needs to be Completed for Each Outlet or BMP Train

Project: 85 & 95 West Street
Prepared By: GBS
Date: 2/24/2021

Version 1, Automated: Mar. 4, 2008

- 1. In BMP Column, click on Blue Cell to Activate Drop Down Menu
- 2. Select BMP from Drop Down Menu
- 3. After BMP is selected, TSS Removal and other Columns are automatically completed.

Location: Outlet 06

	В	С	D	E	F
		TSS Removal	Starting TSS	Amount	Remaining
	BMP ¹	Rate ¹	Load*	Removed (C*D)	Load (D-E)
neet	Grass Channel	0.50	1.00	0.50	0.50
Removal on Worksheet	Deep Sump and Hooded Catch Basin	0.25	0.50	0.13	0.38
Rem on W	Infiltration Basin	0.80	0.38	0.30	0.08
TSS ReCalculation		0.00	0.08	0.00	0.08
Calc		0.00	0.08	0.00	0.08

Total TSS Removal =

Separate Form Needs to be Completed for Each Outlet or BMP Train

Project: 85 & 95 West Street
Prepared By: GBS
Date: 2/24/2021

Storm Sewer Tabulation

Statio	n	Len	Drng A	rea	Rnoff	Area x	C	Тс		Rain	Total	Сар	Vel	Pipe		Invert Elev		HGL Elev		Grnd / Rim Elev		Line ID
.ine	То		Incr	Total	coeff	Incr	Total	Inlet	Syst	(I)	flow	full		Size	Slope	Dn	Up	Dn	Up	Dn	Up	=
	Line	(ft)	(ac)	(ac)	(C)			(min)	(min)	(in/hr)	(cfs)	(cfs)	(ft/s)	(in)	(%)	(ft)	(ft)	(ft)	(ft)	(ft)	(ft)	
26	22	10.048	0.11	0.11	0.65	0.07	0.07	5.0	5.0	9.8	0.70	3.85	0.90	12	1.00	319.90	320.00	321.06	321.06	324.44	321.98	Pipe - (01.1)
25	23	14.678	0.48	0.48	0.38	0.18	0.18	7.3	7.3	9.1	1.66	9.09	2.59	18	0.75	320.13	320.24	320.90	320.72	324.67	322.78	Pipe - (03)
24	23	10.751	1.12	1.12	0.42	0.47	0.47	21.9	21.9	6.2	2.94	9.06	3.60	18	0.74	320.13	320.21	320.90	320.86	324.67	322.75	Pipe - (04)
23	22	32.616	0.00	1.60	0.00	0.00	0.65	0.0	22.0	6.2	4.07	8.82	3.61	18	0.71	319.90	320.13	321.06	320.90	324.44	324.67	Pipe - (02)
22	End	48.757	0.00	1.71	0.00	0.00	0.72	0.0	22.3	6.2	4.49	6.73	4.25	18	0.41	319.70	319.90	320.51	320.83	321.35	324.44	Pipe - (01)
21	End	27.248	0.00	0.00	0.00	0.00	0.00	0.0	0.0	0.0	9.70	25.76	5.94	18	6.02	322.00	323.64	324.18	324.84	323.65	325.28	Pipe - (07)
20	End	65.203	1.53	1.53	0.33	0.50	0.50	12.8	12.8	7.7	9.90	27.78	10.42	18	7.00	325.73	330.29	326.35	331.51	327.37	335.76	Pipe - (08)
19	End	27.140	0.00	0.00	0.00	0.00	0.00	0.0	0.0	0.0	3.70	15.08	5.64	18	2.06	326.00	326.56	326.51	327.29	328.65	328.03	Pipe - (05)
18	End	4.278	0.18	0.18	0.61	0.11	0.11	8.3	8.3	8.8	3.97	10.51	4.96	18	1.00	326.56	326.60	327.20	327.36	328.03	335.76	Pipe - (06)
17	End	17.329	0.00	0.00	0.00	0.00	0.00	0.0	0.0	0.0	8.90	19.32	8.36	18	2.89	334.00	334.50	334.72	335.65	335.65	337.18	Pipe - (16)
16	End	19.287	0.11	0.11	0.63	0.07	0.07	5.0	5.0	9.8	0.68	10.42	2.61	18	0.99	335.15	335.34	335.46	335.65	353.65	339.24	Pipe - (17.1)
15	End	62.005	0.00	0.00	0.00	0.00	0.00	0.0	0.0	0.0	5.90	10.50	5.60	18	1.00	346.39	347.01	347.19	347.95	348.04	348.65	Pipe - (09.1)
14	End	6.368	2.11	2.11	0.36	0.76	0.76	14.9	14.9	7.3	5.56	10.19	5.43	18	0.94	347.13	347.19	347.92	348.10	347.27	351.70	Pipe - (10)
13	11	21.705	1.63	1.63	0.30	0.49	0.49	12.4	12.4	7.8	3.82	31.88	8.25	18	9.21	350.00	352.00	350.35	352.75	357.68	359.01	Pipe - (20)
12	11	48.921	0.77	0.77	0.30	0.23	0.23	10.5	10.5	8.2	1.90	10.62	4.02	18	1.02	350.00	350.50	350.43	351.02	357.68	358.00	Pipe - (19)
11	10	101.718	0.00	2.40	0.00	0.00	0.72	0.0	12.6	7.8	5.60	38.68	4.75	18	13.57	335.20	349.00	336.19	349.91	340.50	357.68	Pipe - (18)
10	End	4.750	0.36	2.76	0.40	0.14	0.86	5.0	13.1	7.7	6.63	11.38	6.00	18	1.00	335.15	335.20	335.97	336.19	353.65	340.50	Pipe - (17)
9	8	33.580	0.53	0.53	0.68	0.36	0.36	15.1	15.1	7.3	6.22	3.01	7.92	12	0.71	352.30	352.54	353.30	354.33	358.35	354.29	Pipe - (15)
8	End	3.502	0.00	0.53	0.00	0.00	0.36	0.0	15.2	7.3	6.22	10.50	5.69	18	1.00	352.16	352.20	352.99	353.16	352.26	358.35	Pipe - (14)
7	4	13.372	0.02	0.02	0.70	0.01	0.01	5.0	5.0	9.8	0.14	3.51	1.04	12	0.97	351.19	351.32	351.86	351.47	355.73	353.79	Pipe - (11.4)
6	5	3.502	0.00	0.00	0.00	0.00	0.00	0.0	0.0	0.0	3.00	10.50	1.70	18	1.00	353.62	353.65	356.00	356.00	358.01	355.29	Pipe - (13)
5	4	79.000	0.00	0.00	0.00	0.00	0.00	0.0	0.0	0.0	3.00	24.08	3.96	18	5.26	351.19	355.34	351.86	356.00	355.73	358.01	Pipe - (12)

Number of lines: 26

NOTES:Intensity = 127.16 / (Inlet time + 17.80) ^ 0.82; Return period =Yrs. 100; c = cir e = ellip b = box

Common Driveway 85 West Street

Run Date: 4/24/2021

Storm Sewer Tabulation

Statio	n	Len	Drng A	rea	Rnoff	Area x	С	Тс			Total		Vel	Pipe		Invert El	HGL Elev		Grnd / Rim Elev		Line ID	
.ine	То		Incr	Total	coeff	Incr	Total	Inlet	Syst	(I)	flow	full		Size	Slope	Dn	Up	Dn	Up	Dn	Up	
	Line	(ft)	(ac)	(ac)	(C)			(min)	(min)	(in/hr) (cfs) (cfs)	(cfs)	(ft/s)	(in)	(%)	(ft)	(ft)	(ft)	(ft)	(ft)	(ft)		
4		44.215		0.02	0.00	0.00	0.01	0.0	6.3	9.4	3.13	24.08	4.08	18	5.26	348.86	351.19	349.53	351.86	354.00	355.73	Pipe - (11.3)
3		103.853		0.02	0.00	0.00	0.01	0.0	6.7	9.3	3.13	8.79	4.31	18	0.70	348.13	348.86	348.75	349.53	352.78	354.00	Pipe - (11.2)
2		26.772		0.02	0.00	0.00	0.01	0.0	7.7	9.0	3.13	11.21	4.75	18	0.97	347.77	348.03	348.31	348.70	349.79	352.78	Pipe - (11.1)
1	End	33.022	1.51	1.51	0.36	0.54	0.54	21.7	21.7	6.3	3.41	9.49	4.20	18	0.70	947.13	947.36	947.83	948.06	-0.21	949.80	Pipe - (09.2)

Number of lines: 26

NOTES:Intensity = 127.16 / (Inlet time + 17.80) ^ 0.82; Return period =Yrs. 100; c = cir e = ellip b = box

Common Driveway 85 West Street

Run Date: 4/24/2021

NOAA Atlas 14, Volume 10, Version 3 Location name: Westborough, Massachusetts, USA*

Latitude: 42.2667°, Longitude: -71.6333° Elevation: 367.67 ft**

* source: ESRI Maps ** source: USGS

POINT PRECIPITATION FREQUENCY ESTIMATES

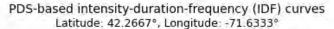
Sanja Perica, Sandra Pavlovic, Michael St. Laurent, Carl Trypaluk, Dale Unruh, Orlan Wilhite

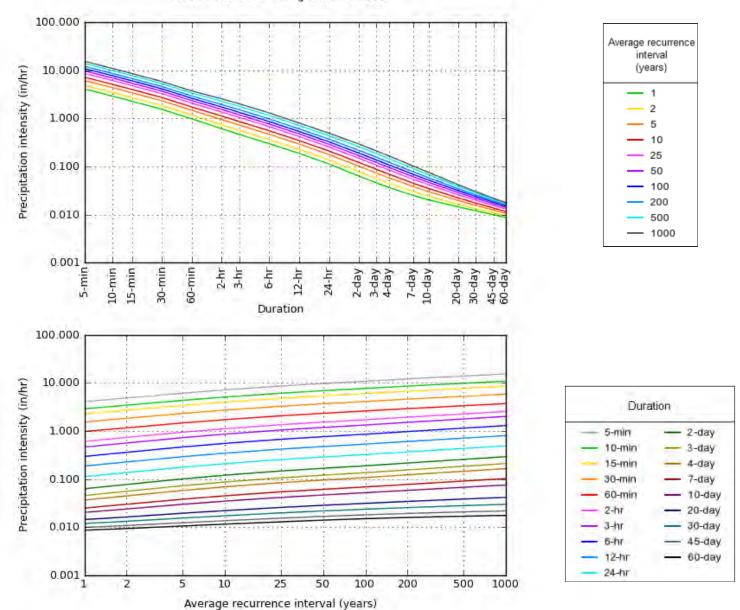
NOAA, National Weather Service, Silver Spring, Maryland

PF tabular | PF graphical | Maps & aerials

PF tabular

Durotion				Avera	ge recurren	ce interval (y	/ears)			
Duration	1	2	5	10	25	50	100	200	500	1000
5-min	4.09 (3.11-5.36)	4.86 (3.70-6.40)	6.12 (4.64-8.08)	7.18 (5.40-9.52)	8.63 (6.31-11.9)	9.72 (7.00-13.7)	10.9 (7.61-15.8)	12.1 (8.11-18.1)	13.9 (9.00-21.5)	15.4 (9.73-24.2)
10-min	2.90 (2.20-3.80)	3.44 (2.62-4.53)	4.34 (3.29-5.72)	5.09 (3.83-6.74)	6.11 (4.48-8.44)	6.89 (4.95-9.71)	7.69 (5.39-11.2)	8.59 (5.75-12.8)	9.86 (6.38-15.2)	10.9 (6.89-17.1)
15-min	2.27 (1.73-2.98)	2.70 (2.05-3.55)	3.41 (2.58-4.49)	3.99 (3.00-5.29)	4.79 (3.51-6.62)	5.40 (3.88-7.61)	6.03 (4.23-8.80)	6.74 (4.50-10.1)	7.73 (5.00-11.9)	8.54 (5.41-13.5)
30-min	1.55 (1.17-2.03)	1.84 (1.40-2.42)	2.32 (1.76-3.06)	2.72 (2.05-3.61)	3.27 (2.40-4.52)	3.69 (2.65-5.20)	4.12 (2.89-6.01)	4.60 (3.08-6.87)	5.29 (3.42-8.17)	5.85 (3.70-9.21)
60-min	0.978 (0.743-1.28)	1.17 (0.884-1.53)	1.47 (1.11-1.94)	1.72 (1.30-2.29)	2.07 (1.52-2.86)	2.34 (1.68-3.29)	2.61 (1.83-3.81)	2.92 (1.95-4.36)	3.36 (2.17-5.18)	3.71 (2.35-5.84)
2-hr	0.610 (0.465-0.796)	0.736 (0.562-0.964)	0.944 (0.718-1.24)	1.12 (0.844-1.47)	1.35 (0.998-1.87)	1.53 (1.11-2.16)	1.72 (1.22-2.52)	1.94 (1.30-2.88)	2.27 (1.47-3.49)	2.55 (1.62-3.99)
3-hr	0.464 (0.355-0.605)	0.564 (0.431-0.736)	0.727 (0.554-0.952)	0.862 (0.654-1.14)	1.05 (0.775-1.44)	1.19 (0.863-1.67)	1.34 (0.951-1.96)	1.51 (1.02-2.24)	1.78 (1.16-2.73)	2.01 (1.28-3.13)
6-hr	0.297 (0.228-0.385)	0.361 (0.277-0.469)	0.466 (0.357-0.608)	0.553 (0.421-0.725)	0.674 (0.500-0.924)	0.763 (0.557-1.07)	0.859 (0.614-1.25)	0.975 (0.657-1.44)	1.15 (0.749-1.75)	1.30 (0.829-2.01
12-hr	0.188 (0.145-0.243)	0.227 (0.175-0.294)	0.292 (0.225-0.379)	0.346 (0.265-0.452)	0.421 (0.313-0.573)	0.476 (0.349-0.663)	0.535 (0.384-0.774)	0.606 (0.410-0.886)	0.712 (0.465-1.08)	0.802 (0.513-1.23
24-hr	0.113 (0.087-0.145)	0.137 (0.106-0.176)	0.177 (0.136-0.228)	0.210 (0.161-0.272)	0.255 (0.191-0.346)	0.289 (0.213-0.401)	0.325 (0.234-0.469)	0.369 (0.250-0.537)	0.435 (0.285-0.653)	0.491 (0.315-0.750
2-day	0.063 (0.049-0.081)	0.078 (0.060-0.099)	0.101 (0.078-0.130)	0.121 (0.093-0.156)	0.148 (0.111-0.200)	0.168 (0.124-0.232)	0.190 (0.138-0.273)	0.216 (0.147-0.313)	0.258 (0.169-0.384)	0.293 (0.189-0.445
3-day	0.046 (0.036-0.058)	0.056 (0.044-0.072)	0.073 (0.057-0.094)	0.087 (0.067-0.112)	0.106 (0.080-0.144)	0.121 (0.090-0.167)	0.136 (0.099-0.196)	0.156 (0.106-0.224)	0.185 (0.122-0.276)	0.211 (0.136-0.319
4-day	0.037 (0.029-0.047)	0.045 (0.035-0.057)	0.058 (0.045-0.074)	0.069 (0.054-0.089)	0.084 (0.064-0.114)	0.096 (0.071-0.132)	0.108 (0.079-0.154)	0.123 (0.084-0.177)	0.146 (0.096-0.216)	0.166 (0.107-0.250
7-day	0.025 (0.020-0.032)	0.030 (0.024-0.038)	0.038 (0.030-0.049)	0.045 (0.035-0.058)	0.054 (0.041-0.073)	0.061 (0.046-0.084)	0.069 (0.050-0.097)	0.078 (0.053-0.111)	0.091 (0.060-0.134)	0.103 (0.066-0.154
10-day	0.020 (0.016-0.026)	0.024 (0.019-0.030)	0.030 (0.023-0.038)	0.035 (0.027-0.045)	0.042 (0.032-0.056)	0.047 (0.035-0.064)	0.052 (0.038-0.073)	0.059 (0.040-0.083)	0.068 (0.045-0.099)	0.075 (0.049-0.113
20-day	0.014 (0.011-0.018)	0.016 (0.013-0.021)	0.020 (0.015-0.025)	0.022 (0.017-0.028)	0.026 (0.020-0.034)	0.029 (0.021-0.038)	0.031 (0.023-0.043)	0.034 (0.024-0.049)	0.039 (0.026-0.056)	0.042 (0.027-0.062
30-day	0.012 (0.009-0.015)	0.013 (0.011-0.017)	0.016 (0.012-0.020)	0.017 (0.014-0.022)	0.020 (0.015-0.026)	0.022 (0.016-0.029)	0.024 (0.017-0.032)	0.026 (0.018-0.036)	0.028 (0.019-0.041)	0.030 (0.020-0.044
45-day	0.010 (0.008-0.012)	0.011 (0.009-0.014)	0.012 (0.010-0.016)	0.014 (0.011-0.017)	0.015 (0.012-0.020)	0.017 (0.013-0.022)	0.018 (0.013-0.025)	0.019 (0.013-0.027)	0.021 (0.014-0.030)	0.022 (0.014-0.032
60-day	0.009	0.009	0.011	0.012 (0.009-0.015)	0.013	0.014	0.015	0.016	0.017	0.018

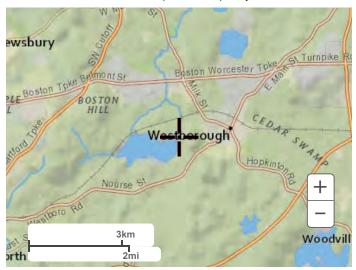

¹ Precipitation frequency (PF) estimates in this table are based on frequency analysis of partial duration series (PDS).

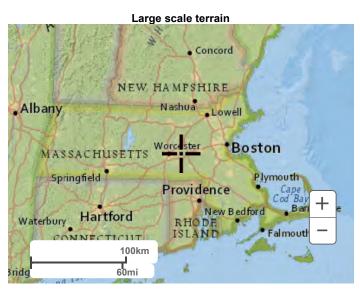

Numbers in parenthesis are PF estimates at lower and upper bounds of the 90% confidence interval. The probability that precipitation frequency estimates (for a given duration and average recurrence interval) will be greater than the upper bound (or less than the lower bound) is 5%. Estimates at upper bounds are not checked against probable maximum precipitation (PMP) estimates and may be higher than currently valid PMP values.

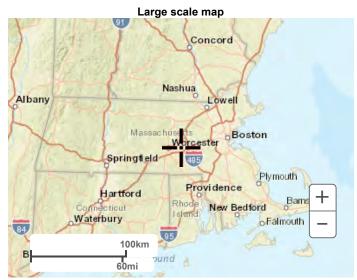
Please refer to NOAA Atlas 14 document for more information.

Back to Top

PF graphical


NOAA Atlas 14, Volume 10, Version 3


Created (GMT): Thu Nov 12 16:06:19 2020


Back to Top

Maps & aerials

Small scale terrain

Large scale aerial

Back to Top

US Department of Commerce

National Oceanic and Atmospheric Administration

National Weather Service

National Water Center

1325 East West Highway

Silver Spring, MD 20910

Questions?: HDSC.Questions@noaa.gov

Disclaimer

MAP LEGEND MAP INFORMATION The soil surveys that comprise your AOI were mapped at Area of Interest (AOI) С 1:20.000. Area of Interest (AOI) C/D Soils Warning: Soil Map may not be valid at this scale. D **Soil Rating Polygons** Enlargement of maps beyond the scale of mapping can cause Not rated or not available Α misunderstanding of the detail of mapping and accuracy of soil **Water Features** line placement. The maps do not show the small areas of A/D Streams and Canals contrasting soils that could have been shown at a more detailed Transportation B/D Rails ---Please rely on the bar scale on each map sheet for map measurements. Interstate Highways C/D Source of Map: Natural Resources Conservation Service **US Routes** Web Soil Survey URL: D Major Roads Coordinate System: Web Mercator (EPSG:3857) Not rated or not available -Local Roads Maps from the Web Soil Survey are based on the Web Mercator projection, which preserves direction and shape but distorts Soil Rating Lines Background distance and area. A projection that preserves area, such as the Aerial Photography Albers equal-area conic projection, should be used if more accurate calculations of distance or area are required. This product is generated from the USDA-NRCS certified data as of the version date(s) listed below. Soil Survey Area: Worcester County, Massachusetts, Northeastern Part Survey Area Data: Version 15, Jun 10, 2020 Soil map units are labeled (as space allows) for map scales 1:50,000 or larger. Not rated or not available Date(s) aerial images were photographed: Jul 26, 2019—Oct 5, **Soil Rating Points** 2019 The orthophoto or other base map on which the soil lines were A/D compiled and digitized probably differs from the background imagery displayed on these maps. As a result, some minor shifting of map unit boundaries may be evident. B/D

Hydrologic Soil Group

Map unit symbol	Map unit name	Rating	Acres in AOI	Percent of AOI
102C	Chatfield-Hollis-Rock outcrop complex, 0 to 15 percent slopes	В	1.0	4.9%
255B	Windsor loamy sand, 3 to 8 percent slopes	А	1.8	8.7%
305B	Paxton fine sandy loam, 3 to 8 percent slopes	С	1.4	6.6%
305C	Paxton fine sandy loam, 8 to 15 percent slopes	С	1.1	5.4%
306B	Paxton fine sandy loam, 0 to 8 percent slopes, very stony	С	3.6	17.2%
306C	Paxton fine sandy loam, 8 to 15 percent slopes, very stony	С	5.7	27.5%
307D	Paxton fine sandy loam, 15 to 25 percent slopes, extremely stony	С	5.1	24.3%
312B	Woodbridge fine sandy loam, 0 to 8 percent slopes, extremely stony	C/D	1.1	5.3%
Totals for Area of Inter	rest	l	20.9	100.0%

Description

Hydrologic soil groups are based on estimates of runoff potential. Soils are assigned to one of four groups according to the rate of water infiltration when the soils are not protected by vegetation, are thoroughly wet, and receive precipitation from long-duration storms.

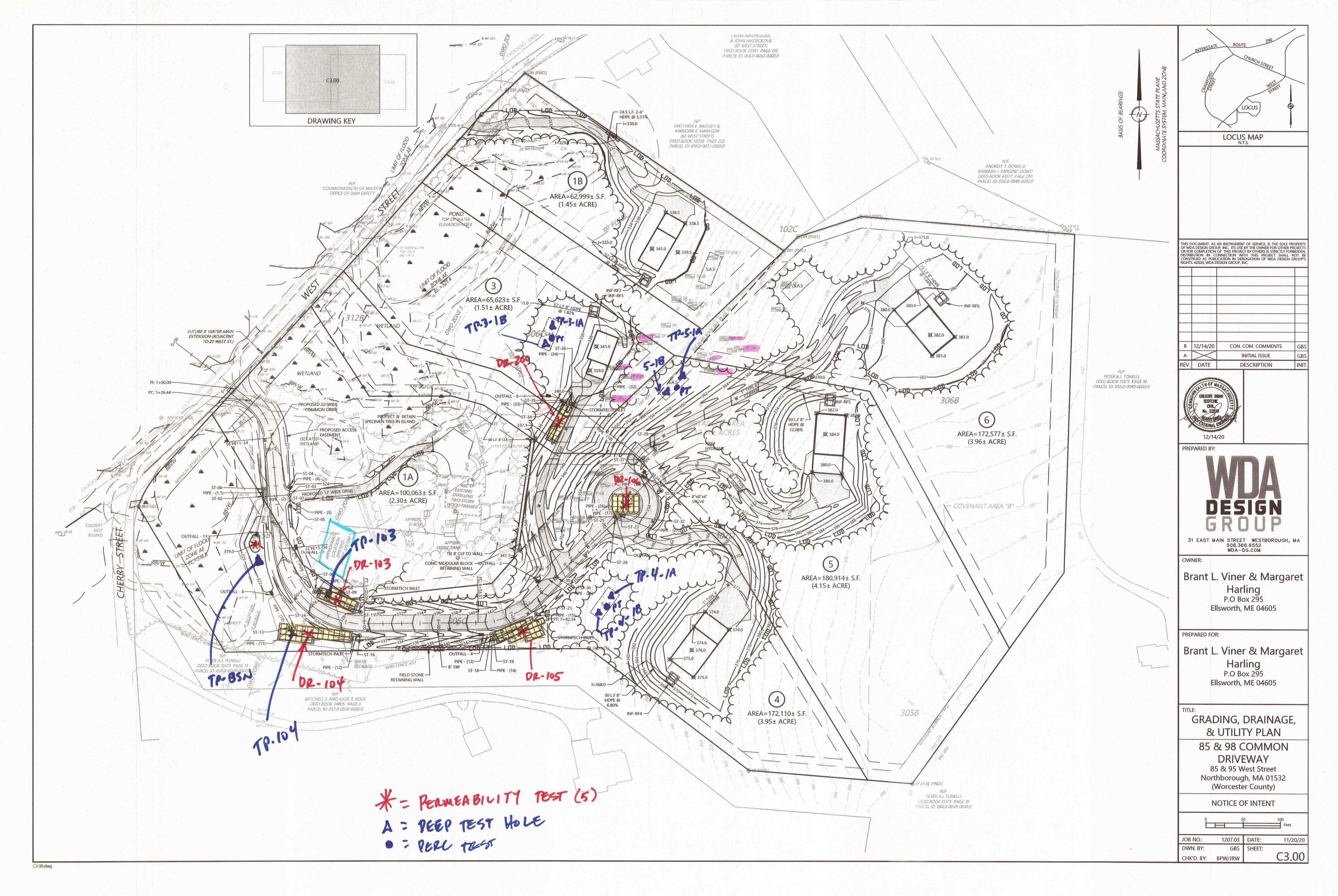
The soils in the United States are assigned to four groups (A, B, C, and D) and three dual classes (A/D, B/D, and C/D). The groups are defined as follows:

Group A. Soils having a high infiltration rate (low runoff potential) when thoroughly wet. These consist mainly of deep, well drained to excessively drained sands or gravelly sands. These soils have a high rate of water transmission.

Group B. Soils having a moderate infiltration rate when thoroughly wet. These consist chiefly of moderately deep or deep, moderately well drained or well drained soils that have moderately fine texture to moderately coarse texture. These soils have a moderate rate of water transmission.

Group C. Soils having a slow infiltration rate when thoroughly wet. These consist chiefly of soils having a layer that impedes the downward movement of water or soils of moderately fine texture or fine texture. These soils have a slow rate of water transmission.

Group D. Soils having a very slow infiltration rate (high runoff potential) when thoroughly wet. These consist chiefly of clays that have a high shrink-swell potential, soils that have a high water table, soils that have a claypan or clay layer at or near the surface, and soils that are shallow over nearly impervious material. These soils have a very slow rate of water transmission.


If a soil is assigned to a dual hydrologic group (A/D, B/D, or C/D), the first letter is for drained areas and the second is for undrained areas. Only the soils that in their natural condition are in group D are assigned to dual classes.

Rating Options

Aggregation Method: Dominant Condition

Component Percent Cutoff: None Specified

Tie-break Rule: Higher

Client: WDA Design Group

Project: 85 West St, Northborough, MA

Project No.: 2021-1A

Date: 1/14/2021
Technician: Mr. Joel Morin

Weather: Cloudy 32-37F, light snow

Site Contact: Mr. Neil Stow

Test No.: DR-103 - see location map

10 Mason Street Worcester, MA 01609 508-831-7404

					Depth of		Container	
					Liquid		vol/∆H	
				Area (cm ²)	(cm)	Liquid No.	(cm³/mark)	_
Test Elevation	1.6	feet bgs	Inner Ring	726	7.6	1	51.13	Small Mariotte
GW Elevation:	n/a	feet bgs	Annular Space	2166	7.6	2	161.02	Big Mariotte
Ground Temp:	1.7	°C						-

			Inner	Ring	Annulai	r Space				
								Inner	Annular	
				Water		Water		Infiltration	Infiltration	
		Time		Volume		Volume	Liquid	Rate	Rate	
Trial		(min)	Reading	(cm³)	Reading	(cm³)	Temp (°C)	(cm/hr)	(cm/hr)	Remarks
1	Test	15	55.00	1150.425	57.50	3639.052	12.2	6.34	6.72	Soil Sample
	Total	15	32.50	1130.423	34.90	3039.032	12.2	0.54	0.72	L29511
2	Test	15	32.50	1140.199	34.90	2930.564	12.2	6.28	5.41	
	Total	30	10.20	1140.133	16.70	2330.304	12.2	0.20	3.41	
3	Test	15	30.20	1094.182	51.20	2833.952	12.2	6.03	5.23	
	Total	45	8.80	1034.102	33.60	2033.332	12.2	0.03	3.23	
4	Test	15	50.70	562.43	51.00	3429.726	12.2	3.10	6.33	
	Total	60	39.70	302.43	29.70	3423.720	12.2	3.10	0.55	
5	Test	15	39.70	485.735	40.00	3542.44	12.2	2.68	6.54	
	Total	75	30.20	403.733	18.00	3342.44	12.2	2.00	0.54	
6	Test	15	55.00	490.848	57.00	2962.768	12.2	2.70	5.47	
	Total	90	45.40	450.040	38.60	2302.700	12.2	2.70	3.47	
7	Test	15	45.40	132.938	49.00	3043.278	12.2	0.73	5.62	
	Total	105	42.80	132.330	30.10	3043.276	12.2	0.75	3.02	
8	Test	15	42.80	127.825	41.00	2978.87	12.2	0.70	5.50	
	Total	120	40.30	127.025	22.50	2370.07	12.2	0.70	3.30	

Client: WDA Design Group

Project: 85 West St, Northborough, MA

Project No.: 2021-1A Date (s): 1/14/2021

Technician: Mr. Joel Morin

Weather: Cloudy 32-37F, light snow

Site Contact: Mr. Neil Stow

Test No.: DR-103 - see location map

10 Mason Street Worcester, MA 01609 508-831-7404

Type of liquid used: Hose water pH: 6.4

Area of Rings:

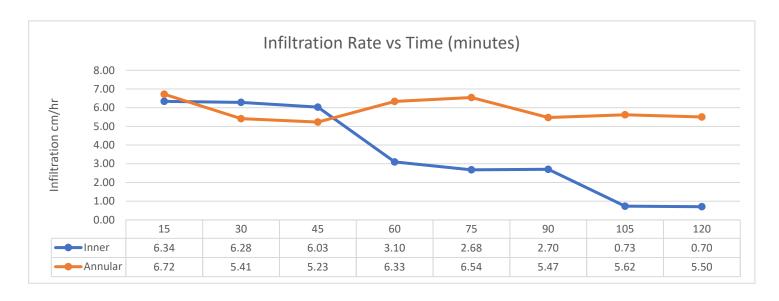
Area (cm²)

Inner Ring 726
Annular Space 2166

Containers Used:

Mariotte Tubes

Flow Constants:


51.13 cm³ 161.02 cm³ Small Mariotte

Big Mariotte

Depth of Liquid in Rings

Inner Ring 13.4 cm Annular Space 13.4 cm

Depth to Groundwater Table: n/a

At the time of termination, the flow was measured stable at 0.70 cm/hr or **4.6 x 10⁻³ in/min**.

Client: WDA Design Group

Project: 85 West St, Northborough, MA

Project No.: 2021-1A

Date: 1/14/2021
Technician: Mr. Joel Morin

Weather: Cloudy 32-37F, light snow

Site Contact: Mr. Neil Stow

Test Elevation

GW Elevation:

Ground Temp:

Test No.: DR-104 - see location map

1.5

n/a

1.7

feet bgs

feet bgs

°C

10 Mason Street Worcester, MA 01609 508-831-7404

		Depth of		Container	
		Liquid		vol/∆H	
	Area (cm ²)	(cm)	Liquid No.	(cm ³ /mark)	_
Inner Ring	726	7.6	1	51.13	Small Mariotte
Annular Space	2166	7.6	2	161.02	Big Mariotte

Inner Ring Annular Space Inner Annular Water Water Infiltration Infiltration Volume Volume Liquid Time Rate Rate (cm³)(cm³)(min) Temp (°C) Trial Reading Reading (cm/hr) (cm/hr) Remarks Test 15 57.00 58.10 Soil Sample 1 1666.838 5442.476 12.2 9.18 10.05 24.40 24.30 L29512 Total 15 Test 15 52.90 43.50 2 1406.075 5667.904 12.2 7.75 10.47 Total 30 25.40 8.30 Test 15 55.10 58.10 3 12.2 7.88 1124.86 4267.03 6.20 Total 45 33.10 31.60 Test 15 56.10 50.90 4 1232.233 4234.826 12.2 6.79 7.82 32.00 24.60 Total 60

WDA Design Group Client:

85 West St, Northborough, MA Project:

Project No.: 2021-1A 1/14/2021 Date (s):

Mr. Joel Morin Technician:

Cloudy 32-37F, light snow Weather:

Site Contact: Mr. Neil Stow

Test No.: DR-104 - see location map

10 Mason Street Worcester, MA 01609 508-831-7404

Type of liquid used: Hose water pH: 6.4

Area of Rings:

Area (cm²)

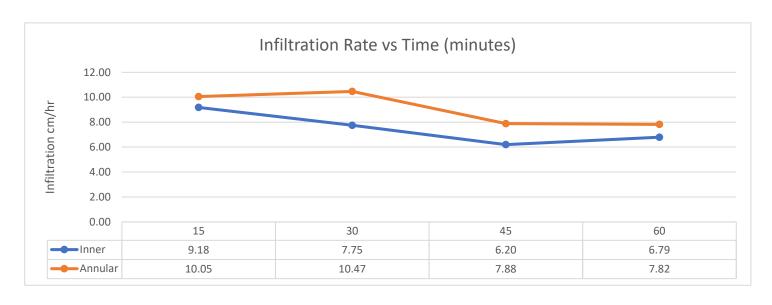
Inner Ring 726 **Annular Space** 2166

Containers Used:

Mariotte Tubes

Flow Constants:

51.13 cm^3 cm³ 161.02


Big Mariotte

Small Mariotte

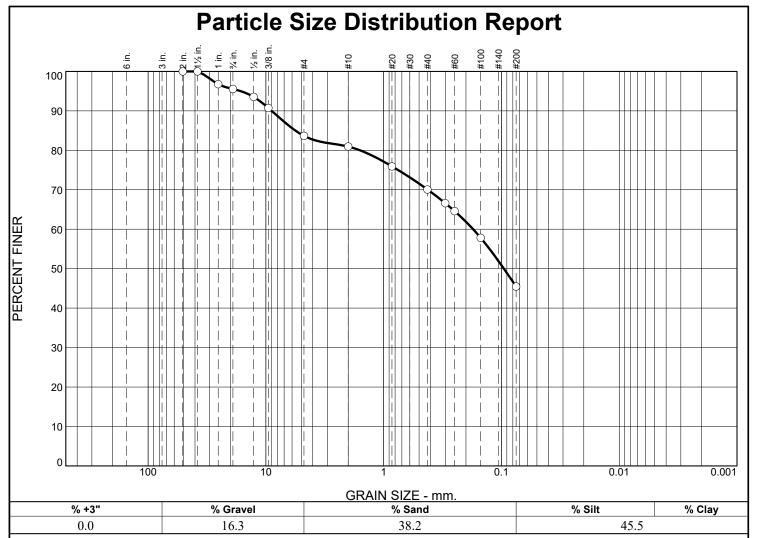
Depth of Liquid in Rings

Inner Ring 13.4 cm **Annular Space** 13.4 cm

Depth to Groundwater Table: n/a

At the time of termination, the flow was measured stable at 7.8 cm/hr or 5.12×10^{-2} in/min.

HYDRAULIC CONDUCTIVITY BY GUELPH PERMEAMETER


Project No.:	2021-1A	Date:	January 20, 2021
Project Name:	85 West Double Rings	Project Address:	85 West Street, Northborough, MA
Client Name:	WDA Design Group	Client Address:	31 East Main Street, Westborough, MA 01581

Purpose: To conduct infiltration testing by Guelph Permeameter per ASTM D5126-10

Date Tested	Location	Depth Below Surface Grade (in)	Approx. Test Elevation (ft)	K _{fsat} (in/min)
1/15/21	DR-200 (see location map)	18	336	3.77x10 ⁻²
1/15/21	DR-106 (see location map)	18	356	2.93x10 ⁻²
1/15/21	DR-105 (see location map)	18	346	2.14x10 ⁻²

Data/worksheets available upon request.

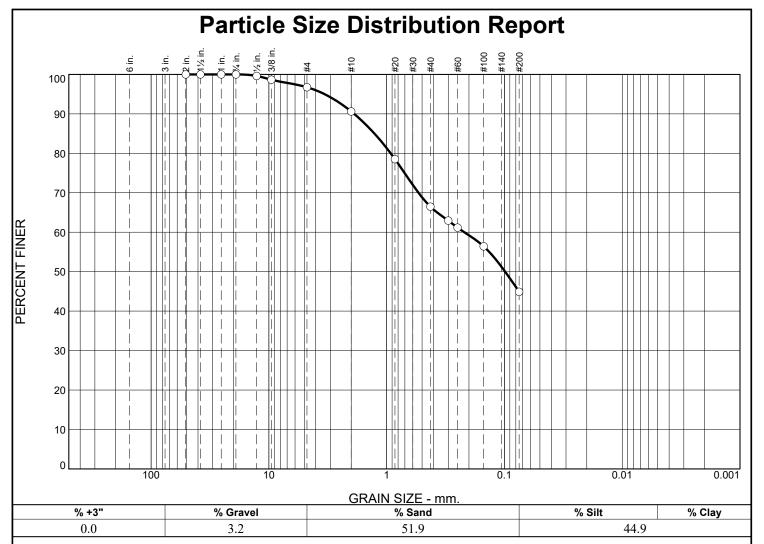
Report by: Mr. Joel Morin

SIEVE	PERCENT	SPEC.*	PASS?
SIZE	FINER	PERCENT	(X=NO)
2"	100.0		
1-1/2"	100.0		
1"	96.8		
3/4"	95.6		
1/2"	93.5		
3/8"	90.7		
#4	83.7		
#10	81.0		
#20	75.9		
#40	70.1		
#50	66.6		
#60	64.6		
#100	57.8		
#200	45.5		

Material Description Brown 1.5" max sand silt little gravel				
PL= NP	Atterberg Limits	PI= NP		
D ₈₅ = 5.6098 D ₃₀ = C _u =	$\begin{array}{c} \underline{\textbf{Coefficients}} \\ \textbf{D}_{60} = 0.1740 \\ \textbf{D}_{15} = \\ \textbf{C}_{c} = \end{array}$	D ₅₀ = 0.0954 D ₁₀ =		
USCS= SM	Classification AASH	ΓO= A-4(0)		
Remarks Sampled by Joel Morin 1/15/20 See infiltration reports for additional information				

(no specification provided)

Sample No.: L29511 Source of Sample: 85 West Double Rings - Northboro Date: 1/20/21 Location: DR-103 Elev./Depth: 18" BSG


YANKEE ENGINEERING & TESTING, INC.

Client: WDA Design Group
Project: WDA Design Group

Various Projects/Sites

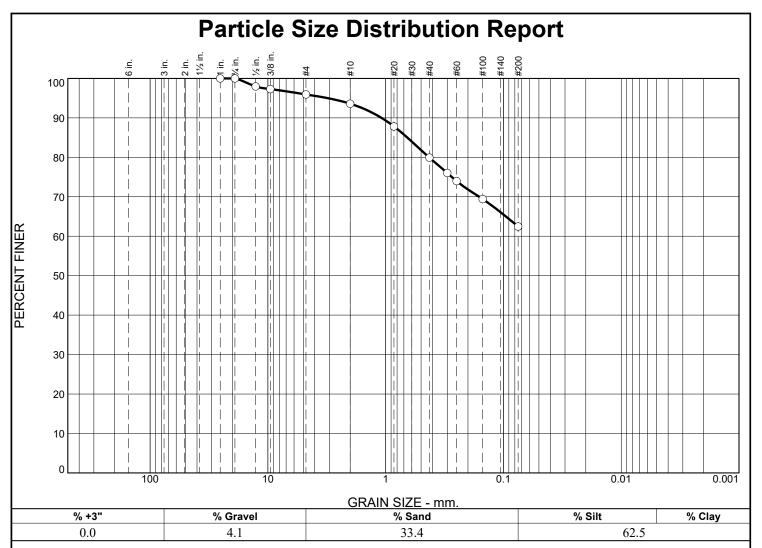
Project No: 2020.5

Tested By: AK Checked By: SMM

	PERCENT	SPEC.*	PASS?
SIZE	FINER	PERCENT	(X=NO)
2"	100.0		
1-1/2"	100.0		
1"	100.0		
3/4"	100.0		
1/2"	99.6		
3/8"	98.7		
#4	96.8		
#10	90.6		
#20	78.5		
#40	66.5		
#50	62.9		
#60	61.2		
#100	56.4		
#200	44.9		

Material Description Light brown silty sand trace gravel					
PL= NP	Atterberg Limits	PI= NP			
D ₈₅ = 1.2693 D ₃₀ = C _u =	$\begin{array}{c} \underline{\textbf{Coefficients}} \\ \textbf{D}_{60} = \ 0.2195 \\ \textbf{D}_{15} = \\ \textbf{C}_{c} = \end{array}$	D ₅₀ = 0.0986 D ₁₀ =			
USCS= SM	Classification AASH1	ΓO= A-4(0)			
Remarks Sampled by Joel Morin 1/15/20 See infiltration reports for additional information					

(no specification provided)


Sample No.: L29512 Source of Sample: 85 West Double Rings - Northboro **Date:** 1/20/21 Elev./Depth: 18" BSG Location: DR-104

YANKEE ENGINEERING & TESTING, INC.

Client: WDA Design Group **Project:** WDA Design Group Various Projects/Sites

Project No: 2020.5

Tested By: AK Checked By: SMM

SIEVE	PERCENT	SPEC.*	PASS?
SIZE	FINER	PERCENT	(X=NO)
1"	100.0		
3/4"	100.0		
1/2"	98.0		
3/8"	97.3		
#4	95.9		
#10	93.6		
#20	87.8		
#40	79.9		
#50	76.0		
#60	74.0		
#100	69.4		
#200	62.5		

Material Description

Light brown sandy silty trace gravel

PL= NP PI= NP LL= NV **Coefficients** D₆₀= D₁₅= C_c= D₅₀= D₁₀= $D_{85} = 0.6542$ Classification

USCS= ML AASHTO= A-4(0)

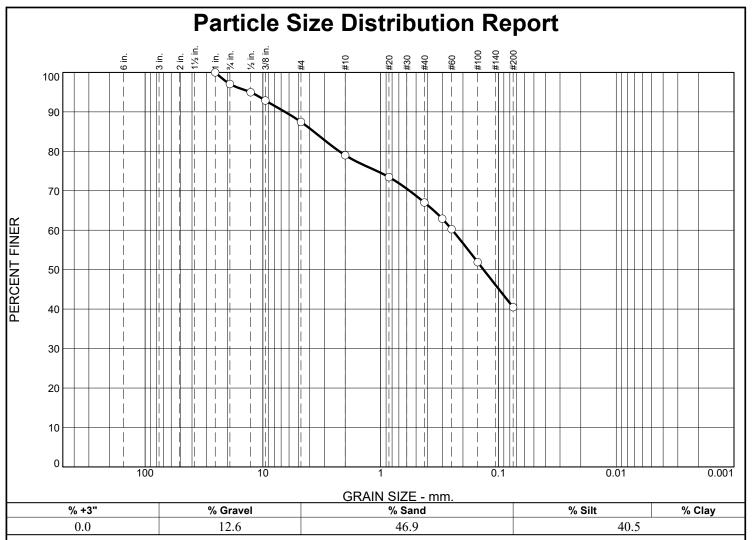
Atterberg Limits

Remarks

Sampled by Joel Morin 1/15/20 See infiltration reports for additional information

(no specification provided)

Sample No.: L29513 Source of Sample: 85 West Double Rings - Northboro **Date:** 1/20/21 Location: DR-105 Elev./Depth: 18" BSG


YANKEE ENGINEERING & TESTING, INC.

Client: WDA Design Group **Project:** WDA Design Group

Various Projects/Sites

2020.5 Project No:

Tested By: AK Checked By: SMM

SIEVE	PERCENT	SPEC.*	PASS?
SIZE	FINER	PERCENT	(X=NO)
1"	100.0		
3/4"	97.1		
1/2"	95.0		
3/8"	92.9		
#4	87.4		
#10	79.0		
#20	73.5		
#40	67.0		
#50	62.9		
#60	60.3		
#100	51.9		
#200	40.5		
_			

Material Description Brown silty sand little gravel				
PL= NP	Atterberg Limits	PI= NP		
D ₈₅ = 3.6953 D ₃₀ = C _u =	Coefficients D60= 0.2460 D15= Cc=	D ₅₀ = 0.1338 D ₁₀ =		
USCS= SM AASHTO= A-4(0)				
Remarks Sampled by Joel Morin 1/15/20 See infiltration reports for additional information				

* (no specification provided)


Sample No.: L29514 Source of Sample: 85 West Double Rings - Northboro Date: 1/20/21 Location: DR-106 Elev./Depth: 18" BSG

YANKEE ENGINEERING & TESTING, INC.

Client: WDA Design Group
Project: WDA Design Group
Various Projects/Sites

Project No: 2020.5

Tested By: AK Checked By: SMM

SIEVE	PERCENT	SPEC.*	PASS?
SIZE	FINER	PERCENT	(X=NO)
1"	100.0		
3/4"	100.0		
1/2"	100.0		
3/8"	99.4		
#4	98.2		
#10	94.6		
#20	88.5		
#40	78.6		
#50	72.5		
#60	68.6		
#100	56.7		
#200	40.9		
* (

Material Description Brown silty sand trace gravel **Atterberg Limits** PL= NP PI= NP LL= NV **Coefficients** D₆₀= 0.1728 D₁₅= C_c= $D_{50}^{=} = 0.1122$ $D_{85} = 0.6441$ Classification USCS= SM $\overline{\mathsf{AASH}}\mathsf{TO} = A-4(0)$ Remarks Sampled by Joel Morin 1/15/20 See infiltration reports for additional information

(no specification provided)

Sample No.: L29516 Source of Sample: 85 West Double Rings - Northboro Date: 1/20/21 Location: DR-200 Elev./Depth: 18" BSG

YANKEE ENGINEERING & TESTING, INC.

Client: WDA Design Group
Project: WDA Design Group
Various Projects/Sites

, arreas rrejects/2

Project No: 2020.5

Tested By: AK Checked By: SMM

TEST HOLE LOG

85 WEST STREET NORTHBOROUGH, MA

Date: 1/13/21

Soil Evaluator: Gerald Buzanoski

Excavator: Neil Stowe

TEST HOLE TP-BSN

<u>Depth</u>	<u>Horizon</u>	<u>Texture</u>	<u>Color</u>
0-12"	Ар	Fine Sandy Loam	10YR2/2
12"-28"	Bw	Fine Sandy Loam	10YR4/6
28"-87"	С	Loam-FSL	10YR4/4

Comments: Redox features observed at 16", seepage at 20"

TEST HOLE DR-103

<u>Depth</u>	<u>Horizon</u>	<u>Texture</u>	<u>Color</u>
0-16"	Ар	Fine Sandy Loam	10YR3/4
16"-38"	Bw	Fine Sandy Loam	10YR4/6
38"-76"	С	Loamy Sand	10YR5/4

Comments: Seepage at 48"

TEST HOLE DR-104

<u>Depth</u>	<u>Horizon</u>	<u>Texture</u>	<u>Color</u>
0-16"	Ар	Fine Sandy Loam	10YR3/2
16"-36"	Bw	Fine Sandy Loam	10YR5/6
36"-66"	С	Medium Sand	10YR4/4

Comments: Redox observed at 24", groundwater at 43"

TEST HOLE 3-1A

<u>Depth</u>	<u>Horizon</u>	<u>Texture</u>	<u>Color</u>
0-6"	Α	Fine Sandy Loam	10YR3/2
6"-50"	Bw	Fine Sandy Loam	10YR4/4
50"-68"	Cd	Loamy Sand	10YR5/3

Comments: Redox observed at 30"; groundwater at 62"

TEST HOLE 3-1B

Depth	<u>Horizon</u>	<u>Texture</u>	Color
0-8"	Α	Fine Sandy Loam	10YR3/2
8"-24"	Bw	Fine Sandy Loam	10YR4/4
24"-38"	B/C	Loamy Sand	10YR4/4-4/6
38"-103"	Cd	Loamy Sand	10YR5/3

Comments: Redox observed at 32"; seepage at 68"

TEST HOLE 4-1A

<u>Depth</u>	<u>Horizon</u>	<u>Texture</u>	<u>Color</u>
0-6"	Α	Fine Sandy Loam	10YR3/2
6"-38"	Bw	Fine Sandy Loam	10YR4/4
38"-106"	Cd	Fine Sandy Loam	10YR5/4

Comments: Redox observed at 29"; no groundwater observed

TEST HOLE 4-1B

<u>Depth</u>	<u>Horizon</u>	<u>Texture</u>	<u>Color</u>
0-6"	Α	Fine Sandy Loam	10YR3/2
6"-46"	Bw	Fine Sandy Loam	10YR4/6
38"-100"	Cd	Fine Sandy Loam	10YR5/2-5/3

Comments: Redox observed at 24"; no groundwater observed

TEST HOLE 5-1A

<u>Depth</u>	<u>Horizon</u>	<u>Texture</u>	<u>Color</u>
0-6"	Α	Fine Sandy Loam	10YR3/2
6"-52"	Bw	Fine Sandy Loam	10YR4/4
52"-104"	Cd	Fine Sandy Loam	10YR5/3

Comments: Redox observed at 42"; no groundwater observed

TEST HOLE 5-1B

<u>Depth</u>	<u>Horizon</u>	<u>Texture</u>	<u>Color</u>
0-6"	Α	Fine Sandy Loam	10YR3/2
6"-48"	Bw	Fine Sandy Loam	10YR4/4
48"-96"	Cd	Fine Sandy Loam	10YR5/2-5/3

Comments: Redox observed at 30"; no groundwater observed

TEST HOLE 5-1C

<u>Depth</u>	<u>Horizon</u>	<u>Texture</u>	<u>Color</u>
0-6"	Α	Fine Sandy Loam	10YR3/2
6"-50"	Bw	Fine Sandy Loam	10YR4/4
50"-88"	Cd	Fine Sandy Loam	10YR5/2-5/3

Comments: Redox observed at 32"; no groundwater observed

PERCOLATION TEST DATA

85 WEST STREET NORTHBOROUGH, MA

Date: 1/13/21

Soil Evaluator: Gerald Buzanoski

Excavator: Neil Stowe

PERC 3

Depth: 55" Soak: 1:32 12": 1:47 9": 2:25

6": discontinued

Rate: 40 mpi (estimate)

Comments: 7.5" at 3:03; estimated rate = 40 mpi

PERC 4

Depth: 50"
Soak: 10:46
12": 11:01
9": 11:35
6": 12:30
Rate: 19 mpi

PERC 5

Depth: 50"
Soak: 12:20
12": 12:35
9": 1:08
6": 1:56
Rate: 16 mpi

TEST HOLE LOG

8 West Street NORTHBOROUGH, MA

Date: 2/3/21

Soil Evaluator: Gerald Buzanoski Excavator: Neal Stowe, Stowe Excavating

TEST HOLE DR-105

<u>Depth</u>	<u>Horizon</u>	<u>Texture</u>	<u>Color</u>
0-6"	Α	Fine Sandy Loam	10yr3/3
6"-32"	Bw	Fine Sandy Loam	10YR5/6
32"-50"	Cd	Fine Sandy Loam	10YR5/3

Comments: Redox features observed at 37"; no groundwater observed.

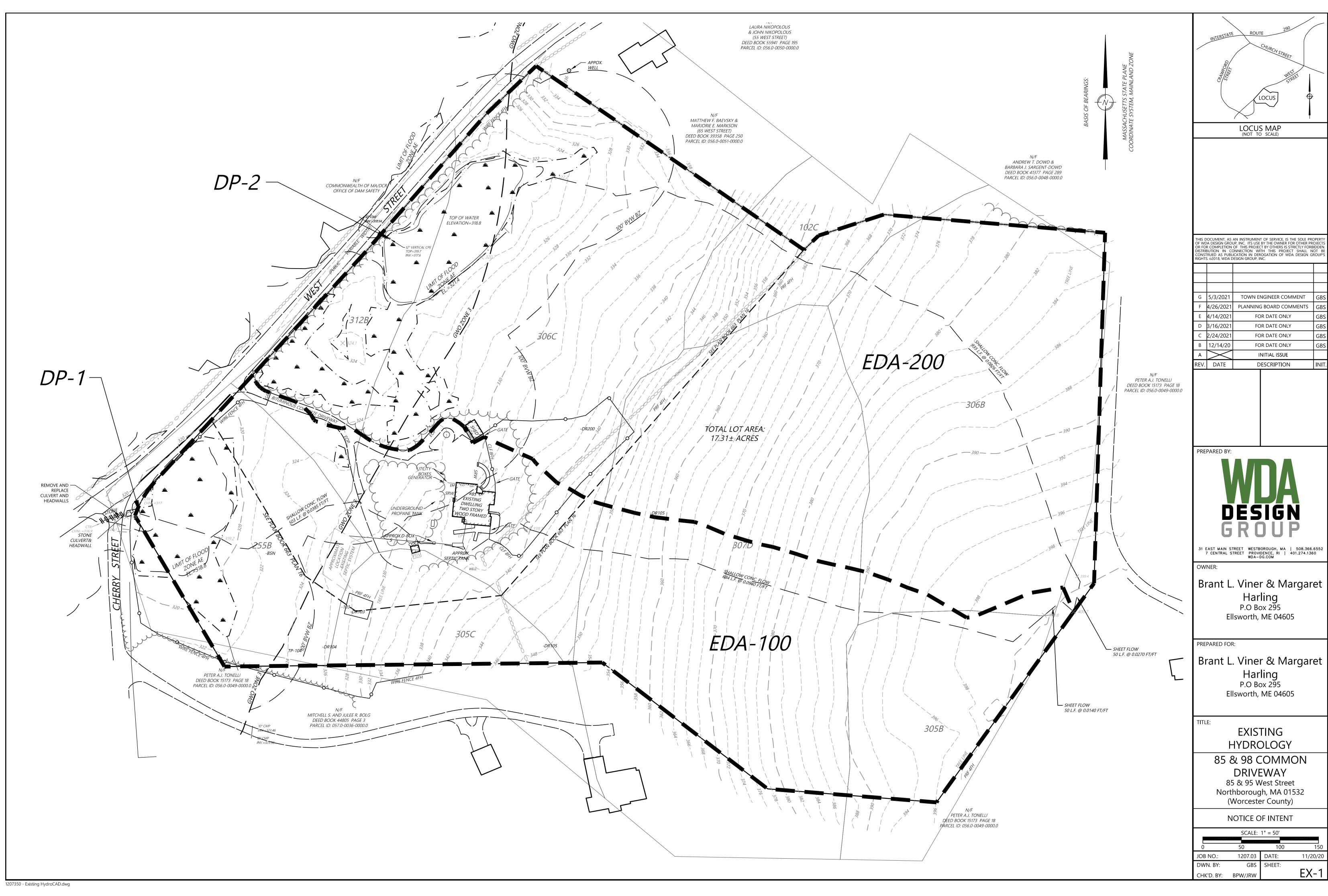
TEST HOLE DR-106

<u>Depth</u>	<u>Horizon</u>	<u>Texture</u>	<u>Color</u>
0-6"	Α	Fine Sandy Loam	10yr3/3
6"-32"	Bw	Fine Sandy Loam	10YR5/6
32"-80"	Cd	Fine Sandy Loam	10YR5/3

Comments: Faint redox features observed at 70"; no groundwater observed.

TEST HOLE DR-200

<u>Depth</u>	<u>Horizon</u>	<u>Texture</u>	<u>Color</u>
0-6"	Α	Fine Sandy Loam	10yr3/2
6"-24"	Bw	Fine Sandy Loam	10YR5/6
24"-72"	C1	Loamy Sand	10YR4/6
48"-72"	C2	Silty Fine Sand	10YR4/4


Comments: Distinct redox features observed at 36"; groundwater observed at 60".

85 West Street Test Hole Data (continued)

TEST HOLE TP-5D

<u>Depth</u>	<u>Horizon</u>	<u>Texture</u>	<u>Color</u>
0-6"	Α	Fine Sandy Loam	10yr3/2
6"-30"	Bw	Fine Sandy Loam	10YR4/4
30"-85"	Cd	Fine Sandy Loam	10YR5/3

Comments: Few faint redox features observed at 42"; no groundwater observed.

